

MATERIAL DATA SHEET

Recombinant Human HA Ubiquitin Aldehyde C-Terminal Derivative Cat. # U-211

Ubiquitin is a 76 amino acid (aa) protein that is ubiquitously expressed in all eukaryotic organisms. Ubiquitin is highly conserved with 96% aa sequence identity shared between human and yeast Ubiquitin, and 100% aa sequence identity shared between human and mouse Ubiquitin (1). In mammals, four Ubiquitin genes encode for two Ubiquitin-ribosomal fusion proteins and two poly-Ubiquitin proteins. Cleavage of the Ubiquitin precursors by deubiquitinating enzymes gives rise to identical Ubiquitin monomers each with a predicted molecular weight of 8.6 kDa. Conjugation of Ubiquitin to target proteins involves the formation of an isopeptide bond between the C-terminal glycine residue of Ubiquitin and a lysine residue in the target protein. This process of conjugation, referred to as ubiquitination or ubiquitylation, is a multi-step process that requires three enzymes: a Ubiquitin-activating (E1) enzyme, a Ubiquitin-conjugating (E2) enzyme, and a Ubiquitin ligase (E3). Ubiquitination is classically recognized as a mechanism to target proteins for degradation and as a result, Ubiquitin was originally named ATP-dependent Proteolysis Factor 1 (APF-1) (2,3). In addition to protein degradation, ubiquitination has been shown to mediate a variety of biological processes such as signal transduction, endocytosis, and postendocytic sorting (4-7).

Ubiquitin-aldehyde is a potent and specific inhibitor of most deubiquitinating enzymes (DUBs) such as Ubiquitin C-terminal hydrolases (UCHs) and Ubiquitin-specific proteases (USPs). It prevents the hydrolysis of poly-Ubiquitin chains on substrate proteins *in vitro* and thus enhances poly-Ubiquitin chain accumulation. This tagged version contains an N-terminal HA peptide sequence (YPYDVPDYA) derived from the influenza Hemagglutinin protein. This epitope allows for the sensitive identification or purification of DUBs since it is specifically recognized by Anti-HA antibodies and/or Anti-HA-agarose.

An R&D Systems Company

Product Information

Quantity: 50 μg

MW: 9.8 kDa

Source: *E. coli*-derived

Contains an N-terminal HA (YPYDVPDYA) tag and a mixture of derivatized and

underivatized C-terminal Aldehyde, quantity is by derivatized content.

Accession # P0CG47

Stock: Lyophilized from a solution in MES.

Solubility: Reconstitute at 2 mg/mL in an aqueous solution.

Purity: >95%, by HPLC.

Use & Storage

Use: Add Recombinant Human HA-Ubiquitin Aldehyde to in vitro assays to inhibit

deubiquitinating enzymes. The HA-tag allows for detection and purification of deubiquitinating enzyme activity. Reaction conditions will need to be optimized for each specific application. We recommend an initial Recombinant Human HA-

Ubiquitin Aldehyde concentration of 2-5 μM.

Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.

• 12 months from date of receipt, -20 to -70 °C as supplied.

• 3 months, -20 to -70 °C under sterile conditions after reconstitution.

An R&D Systems Company

Literature

References:

- 1. Sharp, P.M. & W.-H. Li. (1987) Trends Ecol. Evol. 2:328.
- 2. Ciechanover, A. et al. (1980) Proc. Natl. Acad. Sci. USA 77:1365.
- 3. Hershko, A. et al. (1980) Proc. Natl. Acad. Sci. USA 77:1783.
- 4. Greene, W. et al. (2012) PLoS Pathog. 8:e1002703.
- 5. Tong, X. et al. (2012) J. Biol. Chem. 287:25280.
- 6. Wei, W. et al. (2004) Nature 428:194.
- 7. Wertz, I.E. et al. (2004) Nature 430:694.
- 8. Borodovsky A., et al. (2001) EMBO J. 20: 5187-5196.
- 9. Callis J. and Ling R. (2005) Meth. Enzymol. **399**:51-64.
- 10. Catic A., et al. (2007) PLoS One 2:e679.
- 11. Galardy P., et al. (2005) Methods Enz. **399**:120-131.
- 12. Gredmark S., et al. (2007) J.Virol. **81**:10300-10309.
- 13. Hemelaar J., et al. (2004) Mol. Cel. Biol. 24:84-95.
- 14. Love K.R., et al. (2007) Nat. Chem. Biol. 3:697-705.
- 15. Ovaa H., et al. (2005) Methods Enz. **399**:468-478.

For research use only. Not for use in humans.

