

## **Recombinant Human HA Ubiquitin**

Catalog Number: U-110

|  |  | ION |
|--|--|-----|
|  |  |     |
|  |  |     |

Source E. coli-derived human Ubiquitin protein

Met1 - Gly76 with N-terminal HA (YPYDVPDYA) tag

Accession # P0CG47.1

Predicted Molecular

Mass

9.8 kDa

| <b>SPECIFICATIONS</b> |                                                                                                                                                                                                                                                                                                                                                                          |  |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Activity              | Recombinant Human HA-Ubiquitin can be conjugated to substrate proteins via the subsequent actions of a Ubiquitin-activating (E1) enzyme, a Ubiquitin-conjugating (E2) enzyme, and a Ubiquitin ligase (E3). Reaction conditions will need to be optimized for each specific application. We recommend an initial Recombinant Human HA-Ubiquitin concentration of 5-50 μM. |  |
| Purity                | >95%, by SDS-PAGE under reducing conditions and visualized by Colloidal Coomassie® Blue stain.                                                                                                                                                                                                                                                                           |  |
| Formulation           | Supplied as a solution in HEPES. See Certificate of Analysis for details.                                                                                                                                                                                                                                                                                                |  |

## PREPARATION AND STORAGE

| Shipping            | The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below. |  |  |
|---------------------|-------------------------------------------------------------------------------------------------------------------|--|--|
| Stability & Storage | ge Use a manual defrost freezer and avoid repeated freeze-thaw cycles.                                            |  |  |
|                     | <ul> <li>6 months from date of receipt, -20 to -70 °C as supplied.</li> </ul>                                     |  |  |
|                     | <ul> <li>3 months, -20 to -70 °C under sterile conditions after opening.</li> </ul>                               |  |  |

## BACKGROUND

Ubiquitin is a 76 amino acid (aa) protein that is ubiquitously expressed in all eukaryotic organisms. Ubiquitin is highly conserved with 96% aa sequence identity shared between human and yeast Ubiquitin, and 100% aa sequence identity shared between human and mouse Ubiquitin (1). In mammals, four Ubiquitin genes encode for two Ubiquitin-ribosomal fusion proteins and two poly-Ubiquitin proteins. Cleavage of the Ubiquitin precursors by deubiquitinating enzymes gives rise to identical Ubiquitin monomers each with a predicted molecular weight of 8.6 kDa. Conjugation of Ubiquitin to target proteins involves the formation of an isopeptide bond between the C-terminal glycine residue of Ubiquitin and a lysine residue in the target protein. This process of conjugation, referred to as ubiquitination or ubiquitylation, is a multi-step process that requires three enzymes: a Ubiquitin-activating (E1) enzyme, a Ubiquitin-conjugating (E2) enzyme, and a Ubiquitin ligase (E3). Ubiquitination is classically recognized as a mechanism to target proteins for degradation and as a result, Ubiquitin was originally named ATP-dependent Proteolysis Factor 1 (APF-1) (2,3). In addition to protein degradation, ubiquitination has been shown to mediate a variety of biological processes such as signal transduction, endocytosis, and post-endocytic sorting (4-7).

## References:

- 1. Sharp, P.M. & W.-H. Li. (1987) Trends Ecol. Evol. 2:328.
- 2. Ciechanover, A. et al. (1980) Proc. Natl. Acad. Sci. USA 77:1365.
- 3. Hershko, A. et al. (1980) Proc. Natl. Acad. Sci. USA 77:1783.
- 4. Greene, W. et al. (2012) PLoS Pathog. 8:e1002703.
- 5. Tong, X. et al. (2012) J. Biol. Chem. 287:25280.
- 6. Wei, W. et al. (2004) Nature 428:194.
- 7. Wertz, I.E. et al. (2004) Nature 430:694.
- 8. Coux O., et al. (1996) Ann. Rev. Biochem. 65: 801-847.
- 9. Ellison M.J and Hochstrasser M. (1991) J. Biol. Chem. 266: 21150-21157.
- 10. Finley D., et al. (1994) Mol. Cell. Biol. 14: 5501-5509.
- 11. Fritze C.E. and Anderson T.R. (2000) Meth. Enz. 327: 3-16.
- 12. Terpe K (2003) Appl. Microbiol. Biotech. 60: 523-533.
- 13. Treier M., et al. (1994) Cell. 78: 787-798.
- 14. Wilson I.A., et al. (1984) Cell 37:767-778.

