Mouse Mesenchymal Stem Cell Functional Identification Kit

Catalog Number SC010

Reagents for the identification of mouse bone marrow-derived stem cells (BMSC)/mesenchymal stem cells (MSC) by *in vitro* functional differentiation.
<table>
<thead>
<tr>
<th>SECTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRINCIPLE OF THE ASSAY</td>
<td>1</td>
</tr>
<tr>
<td>LIMITATIONS OF THE PROCEDURE</td>
<td>1</td>
</tr>
<tr>
<td>PRECAUTIONS</td>
<td>1</td>
</tr>
<tr>
<td>MATERIALS PROVIDED &amp; STORAGE CONDITIONS</td>
<td>2</td>
</tr>
<tr>
<td>OTHER SUPPLIES REQUIRED</td>
<td>3</td>
</tr>
<tr>
<td>REAGENT &amp; MATERIAL PREPARATION</td>
<td>4</td>
</tr>
<tr>
<td>PREPARATION OF LYOPHILIZED ANTIBODIES</td>
<td>4</td>
</tr>
<tr>
<td>PROCEDURE OUTLINE</td>
<td>5</td>
</tr>
<tr>
<td>ADIPOGENIC DIFFERENTIATION PROTOCOL</td>
<td>6</td>
</tr>
<tr>
<td>OSTEOGENIC DIFFERENTIATION PROTOCOL</td>
<td>8</td>
</tr>
<tr>
<td>CHONDROGENIC DIFFERENTIATION PROTOCOL</td>
<td>10</td>
</tr>
<tr>
<td>DATA EXAMPLES</td>
<td>12</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>13</td>
</tr>
</tbody>
</table>

Manufactured and Distributed by:

**USA** R&D Systems, Inc.
614 McKinley Place NE, Minneapolis, MN 55413
TEL: 800 343 7475  612 379 2956
FAX: 612 656 4400
E-MAIL: info@bio-techne.com

Distributed by:

**Europe** | **Middle East** | **Africa** Bio-Techne Ltd.
19 Barton Lane, Abingdon Science Park
Abingdon OX14 3NB, UK
TEL: +44 (0)1235 529449
FAX: +44 (0)1235 533420
E-MAIL: info.emea@bio-techne.com

**China** Bio-Techne China Co., Ltd.
Unit 1901, Tower 3, Raffles City Changning Office,
1193 Changning Road, Shanghai PRC 200051
TEL: +86 (21) 52380373  (400) 821-3475
FAX: +86 (21) 52371001
E-MAIL: info.cn@bio-techne.com
**PRINCIPLE OF THE ASSAY**

Stem cells are functionally defined by their capacity to self renew and their ability to generate a large number of differentiated progenitor cells, which commit to further maturation along specific lineages. Multiple stem cell populations have been discovered from various adult tissues, including bone marrow-derived stem cells (BMSCs) and mesenchymal stem cells (MSCs). BMSCs/MSCs are capable of differentiating into multiple cell types including adipocytes, chondrocytes, osteocytes, hepatocytes, cardiomyocytes, and neurons (1-6). With the availability of cell selection technologies and recombinant growth factors, many labs undertake isolation and expansion of stem cells *in vitro* (7-10). During the isolation and expansion of BMSCs/MSCs, the status of stem cells is best evaluated by measuring their ability to differentiate into multiple mesenchymal lineages.

The Mouse Mesenchymal Stem Cell Functional Identification Kit is designed for the identification of mouse BMSCs/MSCs based on their ability to differentiate into multiple mesenchymal lineages. This kit contains specially formulated Adipogenesis, Chondrogenesis, and Osteogenesis Media Supplements, which can be used to effectively differentiate BMSCs/MSCs into adipogenic, chondrogenic, or osteogenic lineages. A panel of antibodies, consisting of anti-mFABP4, anti-mCollagen II, and anti-mOsteopontin, are included to define the mature phenotypes of adipocytes, chondrocytes, and osteocytes, respectively.

**LIMITATIONS OF THE PROCEDURE**

- FOR LABORATORY RESEARCH USE ONLY. NOT FOR DIAGNOSTIC USE.
- The safety and efficacy of this product in diagnostic or other clinical uses has not been established.
- The kit should not be used beyond the expiration date on the kit label.
- The quality of the mesenchymal stem cells and any variation in the procedure can cause variation in the efficiency of cell differentiation.
- The supplements may contain a precipitate. Mix well before use.

**PRECAUTIONS**

The Adipogenic Supplement contains 95% ethanol and is highly flammable. Keep the container tightly closed, and keep it away from sources of ignition.

The acute and chronic effects of over-exposure to the reagents in this kit are unknown. Safe laboratory handling procedures should be followed and protective clothing should be worn when handling kit reagents.

The ITS Supplement contains human transferrin. The transferrin was tested at the donor level using an FDA licensed method and found to be non-reactive for anti-HIV-1/2, anti-HCV, and Hepatitis B surface antigen. As no testing can offer complete assurance of freedom from infectious agents, this reagent should be handled as if capable of transmitting infection.
**MATERIALS PROVIDED & STORAGE CONDITIONS**

Store unopened kit at ≤ -20 °C in a manual defrost freezer. Do not use past kit expiration date.

<table>
<thead>
<tr>
<th>PART</th>
<th>PART #</th>
<th>DESCRIPTION</th>
<th>STORAGE OF OPENED/ RECONSTITUTED REAGENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipogenic Supplement</td>
<td>390415</td>
<td>0.5 mL of a 100X concentrated solution containing hydrocortisone, isobutylmethylxanthine, and indomethacin in 95% ethanol; enough to supplement 50 mL of medium.</td>
<td>Store tightly sealed at 2-8 °C for up to 6 months.*</td>
</tr>
<tr>
<td>Mouse/Rat Osteogenic Supplement</td>
<td>390441</td>
<td>2.5 mL of a 20X concentrated solution containing ascorbate-phosphate, β-glycerolphosphate, and recombinant human BMP-2; enough to supplement 50 mL of medium.</td>
<td>Aliquot and store at ≤ -20 °C in a manual defrost freezer for up to 6 months.* Avoid repeated freeze-thaw cycles.</td>
</tr>
<tr>
<td>Chondrogenic Supplement</td>
<td>390417</td>
<td>0.5 mL of a 100X concentrated solution containing dexamethasone, ascorbate-phosphate, proline, pyruvate, and recombinant human TGF-β3; enough to supplement 50 mL of medium.</td>
<td></td>
</tr>
<tr>
<td>ITS Supplement</td>
<td>390418</td>
<td>0.5 mL of a 100X concentrated solution containing insulin, transferrin, selenious acid, bovine serum albumin, and linoleic acid; enough to supplement 50 mL of medium.</td>
<td></td>
</tr>
<tr>
<td>anti-mFABP4</td>
<td>967799</td>
<td>50 μg of lyophilized goat anti-mouse FABP4 polyclonal antibody; enough to make 5 mL of staining solution when used at the suggested concentration of 10 μg/mL.</td>
<td></td>
</tr>
<tr>
<td>anti-mCollagen II</td>
<td>967803</td>
<td>50 μg of lyophilized sheep anti-mouse Collagen II polyclonal antibody; enough to make 5 mL of staining solution when used at the suggested concentration of 10 μg/mL.</td>
<td>Store at 2-8 °C for up to 1 month or aliquot and store at ≤ -20 °C in a manual defrost freezer for up to 6 months.* Avoid repeated freeze-thaw cycles.</td>
</tr>
<tr>
<td>anti-mOsteopontin</td>
<td>967802</td>
<td>50 μg of lyophilized goat anti-mouse Osteopontin polyclonal antibody; enough to make 5 mL of staining solution when used at the suggested concentration of 10 μg/mL.</td>
<td></td>
</tr>
</tbody>
</table>

*Provided this is within the expiration date of the kit.
OTHER SUPPLIES REQUIRED

Materials
• Mouse mesenchymal stem cells
• 24-well culture plates
• 12 mm coverslips
• 15 mL centrifuge tubes
• Pipettes and pipette tips
• Serological pipettes
• Fine pointed curved forceps
• Glass slides
• Slide box
• Liquid barrier pen

Reagents
• α Minimum Essential Medium (α MEM)
• D-MEM/F-12 (1X)
• Fetal Bovine Serum
• Phosphate-Buffered Saline (PBS)
• Penicillin-Streptomycin-Glutamine (100X)
• Zinc Formalin
• 4% Paraformaldehyde in PBS
• 95% Ethanol
• 1% BSA in PBS
• Triton™ X-100
• Normal Donkey Serum
• Fibronectin [optional; R&D Systems®, Catalog # 1030-FN (bovine) or 1918-FN (human)]
• Mounting medium (R&D Systems®, Catalog # CTS011)
• Secondary developing reagents (R&D Systems®, Catalog # NL001 and NL010)
• Universal Antigen Retrieval Reagent (R&D Systems®, Catalog # CTS015)
• Deionized or distilled water

Equipment
• 37 °C and 5% CO₂ incubator
• Centrifuge
• Hemocytometer
• Inverted microscope
• 37 °C water bath
• Fluorescence microscope
• Cryostat
REAGENT & MATERIAL PREPARATION

αMEM Basal Media - For use with Adipogenic Supplement and Osteogenic Supplement. Mix the following sterile ingredients to make 101 mL of media. Store at 2-8 °C for up to 1 month. Alternatively, basal medium that has been prequalified for Adipogenic and Osteogenic differentiation may be used (R&D Systems®, Catalog # CCM007).

<table>
<thead>
<tr>
<th>ITEM</th>
<th>AMOUNT</th>
<th>FINAL CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>α MEM</td>
<td>90 mL</td>
<td>90%</td>
</tr>
<tr>
<td>Fetal Bovine Serum</td>
<td>10 mL</td>
<td>10%</td>
</tr>
<tr>
<td>100X Penicillin-Streptomycin-Glutamine</td>
<td>1 mL</td>
<td>100 U/mL Penicillin, 100 μg/mL Streptomycin, 2 mM L-Glutamine</td>
</tr>
</tbody>
</table>

D-MEM/F-12 Basal Media - For use with Chondrogenic Supplement. Mix the following sterile ingredients to make 50 mL of media. Store in the dark at 2-8 °C for up to 1 month.

<table>
<thead>
<tr>
<th>ITEM</th>
<th>AMOUNT</th>
<th>FINAL CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-MEM/F-12</td>
<td>49 mL</td>
<td>99%</td>
</tr>
<tr>
<td>ITS Supplement</td>
<td>500 μL</td>
<td>1%</td>
</tr>
<tr>
<td>100X Penicillin-Streptomycin-Glutamine</td>
<td>500 μL</td>
<td>100 U/mL Penicillin, 100 μg/mL Streptomycin, 2 mM L-Glutamine</td>
</tr>
</tbody>
</table>

PREPARATION OF LYOPHILIZED ANTIBODIES

Anti-mFABP4 - Reconstitute with 500 μL of sterile PBS. Mix gently. Results in a 100 μg/mL stock solution.

Anti-mCollagen II - Reconstitute with 500 μL of sterile PBS. Mix gently. Results in a 100 μg/mL stock solution.

Anti-mOsteopontin - Reconstitute with 500 μL of sterile PBS. Mix gently. Results in a 100 μg/mL stock solution.
PROCEDURE OUTLINE

Expand MSCs

Adipogenic Differentiation
Plate 2.1 x 10^4 MSCs/cm^2 in StemXVivo Osteogenic/Adipogenic Base Media.

Osteogenic Differentiation
Plate 4.2 x 10^4 MSCs/cm^2 in StemXVivo Osteogenic/Adipogenic Base Media.

Chondrogenic Differentiation
Transfer 2.5 x 10^5 MSCs to a 15 mL conical tube.

EVERY 3-4 DAYS
Replace media with fresh Adipogenic Differentiation Media. 
AFTER 10-14 DAYS
Adipocytes can be fixed.
ICC detection of FABP4.

EVERY 3-4 DAYS
Replace media with fresh Osteogenic Differentiation Media. 
AFTER 14-21 DAYS
Osteocytes can be fixed.
ICC detection of Osteopontin.

EVERY 3-4 DAYS
Replace media with fresh Chondrogenic Differentiation Media. 
AFTER 17-21 DAYS
Chondrogenic pellet can be harvested.
ICC detection of Collagen II.

Culture cells to 100% confluence.

Culture cells to 50-70% confluence.

Centrifuge and resuspend the cells in Chondrogenic Differentiation Media.
Centrifuge the cells but do not remove the medium.

Cryosection the chondrogenic pellet.
ADIPOGENIC DIFFERENTIATION PROTOCOL

Fresh supplemented media should be made for each usage or media change. The recommended amount of medium for a 24-well plate is 0.5 mL/well. Make 5.0 mL of media for 10 wells.

PREPARATION OF ADIPOGENIC DIFFERENTIATION MEDIA

1. If a precipitate forms, warm the Adipogenic Supplement vial in a 37 °C water bath for 5 minutes. Vortex until the precipitate dissolves.

2. Add 50 µL of the Adipogenic Supplement to 5.0 mL of α MEM Basal Media. Mix gently.

PREPARATION OF CULTURE PLATES FOR ADIPOGENIC DIFFERENTIATION

1. Insert a sterile coverslip (sterilized with 95% Ethanol and flamed) into each well of a 24-well plate.

2. Add 0.5 mL of sterile PBS to each well. Gently sink the floating coverslips with a sterile pipette tip.

3. Store in a 37 °C incubator until needed.

4. Remove the PBS from the wells before beginning the Adipogenesis Culture Protocol.

ADIPOGENESIS CULTURE PROTOCOL

Note: 50 mL of Adipogenic Differentiation Media is sufficient to culture and differentiate 12 wells for 14 days with 6 media changes. The culturing of 10 wells will provide enough coverslips for 2 monitor stainings and 1 final staining of cells; 1 coverslip for oil red staining and 2 coverslips for immunostaining.

1. Seed cells at a density of 2.1 x 10⁴ cells/cm². Each well is approximately 1.76 cm² requiring 3.7 x 10⁴ cells/well.

2. Prepare 3.7 x 10⁵ cells in 5.0 mL of α MEM Basal Media.

3. Dispense 0.5 mL of the cell suspension into each of the 10 wells. Incubate overnight in a 37 °C and 5% CO₂ incubator. Note: Cells should be 100% confluent after overnight incubation. If they are not confluent, replace the medium every 2-3 days with a MEM Basal Media until 100% confluency is reached.

4. When the cells are 100% confluent, replace the media in each well with 0.5 mL of Adipogenic Differentiation Media to induce adipogenesis.

5. Replace with fresh Adipogenic Differentiation Media (0.5 mL/well) every 3-4 days. After 10 days, lipid vacuoles will start to appear in the induced cells. Note: The adipogenic cells are fragile; media replacement should be performed gently so as not to disturb the lipid vacuoles. The appearance of vacuoles can be monitored by microscopic examination. Coverslips may be removed for oil red staining (refer to the Procedure Outline on page 5). For a staining protocol, please see reference 8.

6. After 10-14 days, adipocytes can be fixed and saved for immunostaining (refer to the Fixing and Staining Protocol on page 7).
FIXING & STAINING PROTOCOL-IMMUNOCYTOCHEMISTRY OF ADIPOCYTES

1. Wash the cells twice with 1.0 mL of PBS.

2. Fix the cells with 0.5 mL of 4% paraformaldehyde in PBS for 20 minutes at room temperature.

3. Wash the cells three times with 0.5 mL of 1% BSA in PBS for 5 minutes.

4. Permeabilize and block the cells with 0.5 mL of 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum in PBS at room temperature for 45 minutes.

5. During the blocking, dilute the reconstituted anti-mFABP4 antibody in PBS containing 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum to a final concentration of 10 µg/mL. **Note:** A negative control should be run using PBS containing 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum with no primary antibody.

6. After blocking, incubate the cells with 300 µL/well of anti-mFABP4 antibody working solution for 3 hours at room temperature or overnight at 2-8 °C.

7. Wash the cells three times with 0.5 mL of 1% BSA in PBS for 5 minutes.

8. Dilute the secondary antibody (e.g., NL557-conjugated donkey anti-goat secondary antibody, Catalog # NL001) 1:200 in 1% BSA in PBS.

9. Incubate the cells with secondary antibody working solutions at 300 µL/well **in the dark** for 60 minutes at room temperature.

10. Wash the cells three times with 0.5 mL of 1% BSA in PBS for 5 minutes.

11. Cover the cells with 1.0 mL of PBS, and visualize with a fluorescence microscope.

12. Alternatively, aspirate the PBS from the wells and add 0.5 mL of distilled water. Carefully remove the coverslips with forceps and mount cell side down onto a drop of mounting medium on a glass slide.

13. The slides are ready for microscopic observation (refer to the images in the Procedure Outline on page 5).
OSTEOGENIC DIFFERENTIATION PROTOCOL

Fresh supplemented media should be made for each usage or media change. The recommended amount of media for a 24-well plate is 0.5 mL/well. Make 5.0 mL of media for 10 wells.

PREPARATION OF OSTEOGENIC DIFFERENTIATION MEDIA

1. Warm the Mouse/Rat Osteogenic Supplement vial in a 37 °C water bath for 5 minutes.
2. Add 250 µL of the Mouse/Rat Osteogenic Supplement to 5.0 mL of α MEM Basal Media. Mix gently.
3. Divide the unused supplement into 250 µL aliquots.

PREPARATION OF CULTURE PLATES FOR OSTEOGENIC DIFFERENTIATION

1. Insert a sterile coverslip (sterilized with 95% Ethanol and flamed) into each well of a 24-well plate.
2. Add 0.5 mL of sterile PBS to each well. Gently sink the floating coverslips with a sterile pipette tip.
3. Store in a 37 °C incubator until needed.
4. Remove the PBS from the wells before beginning the Osteogenesis Culture Protocol.

OSTEGENESIS CULTURE PROTOCOL

Note: 50 mL of Osteogenic Differentiation Media will provide adequate medium to culture and differentiate 16 wells for 21 days with 6 media changes. The culturing of 10 wells will provide enough coverslips for weekly monitoring of cells. Additional coverslips can be used for Alizarin red staining if desired.

Cell detachment can occur during osteogenic differentiation. Coating the coverslips with fibronectin can be used to delay cell detachment. Add 0.5 mL of a fibronectin solution at a concentration of 1.0 µg/mL to each well. Incubate at 37 °C for 3-30 hours. Refer to R&D Systems®, Catalog # 1918-FN for Human Fibronectin.

1. Seed cells at a density of 4.2 x 10³ cells/cm². Each well is approximately 1.76 cm² requiring 7.4 x 10³ cells/well.
2. Prepare 7.4 x 10⁴ cells in 5.0 mL of α MEM Basal Media.
3. Dispense 0.5 mL of the cell suspension into each of the 10 wells. Incubate overnight in a 37 °C and 5% CO₂ incubator. Note: The cells should be about 50-70% confluent in 1-2 days.
4. At 50-70% confluency, replace the media in each well with 0.5 mL of Osteogenic Differentiation Media to induce osteogenesis.
5. Replace with 0.5 mL of fresh Osteogenic Differentiation Media (0.5 mL/well) every 3-4 days.
6. After 14-21 days (or when cells start to detach), osteocytes can be fixed and saved for immunostaining (refer to the Fixing and Staining Protocol on page 9). Cells may also be ethanol fixed and stained with Alizarin Red. For a staining protocol, see reference 8.
1. Wash the cells twice with 1.0 mL of PBS.

2. Fix the cells with 0.5 mL of 4% paraformaldehyde in PBS for 20 minutes at room temperature.

3. Wash the cells three times with 0.5 mL of 1% BSA in PBS for 5 minutes.

4. Permeabilize and block the cells with 0.5 mL of 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum in PBS at room temperature for 45 minutes.

5. During the blocking, dilute the reconstituted anti-mOsteopontin antibody in PBS containing 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum to a final concentration of 10 µg/mL.

   **Note:** A negative control should be run using PBS containing 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum with no primary antibody.

6. After blocking, incubate the cells with 300 µL/well of anti-mOsteopontin antibody working solution for 3 hours at room temperature or overnight at 2-8 °C.

7. Wash the cells three times with 0.5 mL of 1% BSA in PBS for 5 minutes.

8. Dilute the secondary antibody (e.g., NL557-conjugated donkey anti-goat secondary antibody, Catalog # NL001) 1:200 in 1% BSA in PBS.

9. Incubate the cells with secondary antibody working solution at 300 µL/well in the dark for 60 minutes at room temperature.

10. Wash the cells three times with 0.5 mL of 1% BSA in PBS for 5 minutes.

11. Cover the cells with 1.0 mL of PBS, and visualize with a fluorescence microscope.

12. Alternatively, aspirate the PBS from the wells and add 0.5 mL of distilled water. Carefully remove the coverslips with forceps and mount cell side down onto a drop of mounting medium on a glass slide.

13. The slides are ready for microscopic observation (refer to the images in the Procedure Outline on page 5).
CHONDROGENIC DIFFERENTIATION PROTOCOL

This kit contains adequate media to culture 10 pellets for 3 weeks with media changes 3 times per week. Fresh supplemented media should be made for each use or medium change. Make 2.5 mL of media for 5 tubes. Culture the cells in 15 mL conical tubes (each 15 mL conical tube requires 0.5 mL of media).

PREPARATION OF CHONDROGENIC DIFFERENTIATION MEDIA

1. Warm the Chondrogenic Supplement vial in a 37 °C water bath for 5 minutes.
2. Add 25 µL of the Chondrogenic Supplement to 2.5 mL of D-MEM/F-12 Basal Media. Mix gently.
3. Divide the unused supplement into 25 µL aliquots.

CHONDROGENESIS CULTURE PROTOCOL

1. Transfer 250,000 cells in their existing culture media to a 15 mL conical tube.
2. Centrifuge the cells at 200 x g for 5 minutes at room temperature. Remove the media and resuspend the cells with 1.0 mL of D-MEM/F-12 Basal Media.
3. Centrifuge the cells at 200 x g for 5 minutes. Aspirate and discard the media.
4. Resuspend the cells in 0.5 mL of Chondrogenic Differentiation Media, and centrifuge the cells at 200 x g for 5 minutes at room temperature. Do not remove the media.
5. Loosen the cap(s) of the tubes to allow gas exchange, and incubate upright at 37 °C and 5% CO₂.
6. Replace the media with 0.5 mL of fresh Chondrogenic Differentiation Media every 2-3 days. The pellet should not be attached to the tube. **Note:** Use caution when replacing the media to avoid aspirating the pellet.
7. After 17-21 days, the chondrocyte pellet can be fixed and prepared for frozen sectioning (refer to the Fixing and Staining Protocol on page 11).
FIXING & STAINING PROTOCOL-IMMUNOCYTOCHEMISTRY OF CHONDROCYTES

Note: Staining is done on glass slides. To contain the solutions, use a liquid barrier pen to circle the tissue sections. Amounts of solutions needed to cover the tissue will vary depending on the size of the circle drawn. The amounts listed in the following procedure will be more than adequate.

1. Wash the pellet twice with 1.0 mL of PBS.
2. Fix the pellet with 0.5 mL of Zinc formalin solution overnight at 2-8 °C.
3. After the overnight incubation, wash the pellet twice with 1.0 mL of PBS for 5 minutes.
4. Freeze and section the pellet using standard cryosectioning methods. Cut the sections at a nominal thickness of 5-10 µm.
5. Perform antigen retrieval using the Universal Antigen Retrieval Reagent from (R&D Systems®, Catalog # CTS015) according to the instructions in the product insert.
6. Permeabilize and block the mounted pellet sections with 0.15 mL of 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum in PBS at room temperature for 45 minutes.
7. During blocking, dilute the reconstituted anti-mCollagen II antibody in PBS containing 0.3% Triton® X-100, 1% BSA, and 10% normal donkey serum at 1:10 to a final concentration of 10 µg/mL. Note: A negative control should be run using PBS containing 0.3% Triton X-100, 1% BSA, and 10% normal donkey serum with no primary antibody.
8. After blocking, incubate sections with anti-mCollagen II antibody working solution overnight at 2-8 °C. Keep in a covered container with adequate moisture.
9. Wash the slides three times with PBS containing 0.1% BSA for 5 minutes.
10. Dilute the secondary antibody (e.g., NL557-conjugated donkey anti-sheep secondary antibody, Catalog # NL010) 1:200 in PBS containing 1% BSA.
11. Incubate the sections with secondary antibody working solution at 300 µL per section in the dark for 60 minutes at room temperature.
12. Wash the slides three times with PBS containing 1% BSA for 5 minutes.
13. Wash the slides once with distilled water, and remove excess water.
14. Place a drop of mounting medium on the section, and cover with a glass coverslip.
15. The slides are ready for microscopic observation (refer to the images in the Procedure Outline on page 5).
Verification of Multipotency using the Mouse Mesenchymal Stem Cell Functional Identification Kit. Mouse mesenchymal stem cells were cultured in StemXVivo™ Mesenchymal Stem Cell Expansion Media (R&D Systems®, Catalog # CCM004) and differentiation was induced as indicated using the media supplements included in this kit. The cells were stained using the NorthernLights™ 557-conjugated Donkey Anti-Goat (R&D Systems®, Catalog # NL001; red) or Anti-Sheep (R&D Systems®, Catalog # NL010; red) IgG Secondary Antibodies, and the nuclei were counterstained with DAPI (blue).
REFERENCES

All trademarks and registered trademarks are the property of their respective owners.