

Mouse HGFR/c-MET Antibody

Monoclonal Rat IgG_{2A} Clone # 118624 Catalog Number: MAB527

DESCRIPTION		
Species Reactivity	Mouse	
Specificity	Detects the α subunit of mouse HGF R/c-MET in direct ELISAs and Western blots.	
Source	Monoclonal Rat IgG _{2A} Clone # 118624	
Purification	Protein A or G purified from hybridoma culture supernatant	
Immunogen	S. frugiperda insect ovarian cell line Sf 21-derived recombinant mouse HGF R/c-MET Glu25-Asn929 Accession # P16056	
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose.	

	ICAT	

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

1. The state of th				
	Recommended Concentration	Sample		
Western Blot	1 μg/mL	Recombinant Mouse HGF R/c-MET Fc Chimera (Catalog # 527-ME)		

PREPARATION AND STORAGE			
Reconstitution	Reconstitute at 0.5 mg/mL in sterile PBS.		
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.		
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution. 6 months, -20 to -70 °C under sterile conditions after reconstitution.		

BACKGROUND

HGF R, also known as Met (from *N*-methyl-*N*-nitrosoguanidine induced), is a glycosylated receptor tyrosine kinase that plays a central role in epithelial morphogenesis and cancer development. HGF R is synthesized as a single chain precursor which undergoes cotranslational proteolytic cleavage. This generates a mature HGF R that is a disulfide-linked dimer composed of a 50 kDa extracellular α chain and a 145 kDa transmembrane β chain (1, 2). The extracellular domain (ECD) contains a seven bladed β-propeller sema domain, a cysteine-rich PSI/MRS, and four Ig-like E-set domains, while the cytoplasmic region includes the tyrosine kinase domain (3, 4). An alternately spliced form of mouse HGF R lacks a cytoplasmic juxtamembrane region important for regulation of signal transduction (5, 6). The sema domain, which is formed by both the α and β chains of HGF R, mediates both ligand binding and receptor dimerization (3, 7). Ligand-induced tyrosine phosphorylation in the cytoplasmic region activates the kinase domain and provides docking sites for multiple SH2-containing molecules (8, 9). HGF stimulation induces HGF R down-regulation *via* internalization and proteasome-dependent degradation (10). In the absence of ligand, HGF R forms noncovalent complexes with a variety of membrane proteins including CD44v6, CD151, EGF R, Fas, integrin α6/β4, plexins B1, 2, 3, and MSP R/Ron (11-18). Ligation of one complex component triggers activation of the other, followed by cooperative signaling effects (11-18). Formation of some of these heteromeric complexes is a requirement for epithelial cell morphogenesis and tumor cell invasion (11, 15, 16). Paracrine induction of epithelial cell scattering and branching tubulogenesis results from the stimulation of HGF R on undifferentiated epithelium by HGF released from neighboring mesenchymal cells (19). Genetic polymorphisms, chromosomal translocation, overexpression, and additional splicing and proteolytic cleavage of HGF R have been described in a wide range of cancers (1). Within the

References:

- 1. Birchmeier, C. et al. (2003) Nat. Rev. Mol. Cell Biol. 4:915.
- 2. Corso, S. et al. (2005) Trends Mol. Med. 11:284.
- 3. Gherardi, E. et al. (2003) Proc. Natl. Acad. Sci. 100:12039.
- 4. Chan, A.M. et al. (1988) Oncogene 2:593.
- 5. Lee, C-C. and K.M. Yamada (1994) J. Biol. Chem. 269:19457.
- 6. Lee, C-C., *et al.* (1995) J. Biol. Chem. **270**:507.
- 7. Kong-Beltran, M. et al. (2004) Cancer Cell 6:75.
- 8. Naldini, L. et al. (1991) Mol. Cell. Biol. 11:1793.
- 9. Ponzetto, C. et al. (1994) Cell 77:261.
- 10. Jeffers, M. et al. (1997) Mol. Cell. Biol. 17:799.
- 11. Orian-Rousseau, V. et al. (2002) Genes Dev. 16:3074.
- 12. Klosek, S.K. et al. (2005) Biochem. Biophys. Res. Commun. 336:408.
- 13. Jo, M. et al. (2000) J. Biol. Chem. 275:8806.
- 14. Wang, X. et al. (2002) Mol. Cell 9:411.
- 15. Trusolino, L. et al. (2001) Cell 107:643.
- 16. Giordano, S. et al. (2002) Nat. Cell Biol. 4:720.
- 17. Conrotto, P. et al. (2004) Oncogene 23:5131.
- 18. Follenzi, A. et al. (2000) Oncogene 19:3041.
- 19. Sonnenberg, E. et al. (1993) J. Cell Biol. 123:223.

Rev. 1/4/2024 Page 1 of 1

