Species Reactivity: Human/Primate

Specificity: Detects human and primate Cripto-1 in ELISAs. In sandwich immunoassays, no cross-reactivity with recombinant mouse Cripto-1, recombinant human (rh) EGF, rhTGF-α, rhTGF-β1, rhTGF-β2, rhTGF-β3, or rhCryptic is observed.

Source: Monoclonal Mouse IgG1, Clone # 89633

Purification: Protein A or G purified from hybridoma culture supernatant

Immunogen: E. coli-derived recombinant human Cripto-1

Accession #: P13385

Endotoxin Level: <0.10 EU per 1 µg of the antibody by the LAL method.

Formulation: Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.

APPLICATIONS

Recommended Concentration

Sample

Immunocytochemistry

5-25 µg/mL

See Below

Human/Primate Cripto-1 Sandwich Immunoassay

ELISA Capture

2-8 µg/mL

Human/Primate Cripto-1 Antibody (Catalog # MAB2772)

ELISA Detection

0.5-2.0 µg/mL

Human/Primate Cripto-1 Biotinylated Antibody (Catalog # BAM2773)

Blockade of Receptor-ligand Interaction

In a functional ELISA, 0.1-0.5 µg/mL of this antibody will block 50% of the binding of 75 ng/mL of Recombinant Human Cripto-1 (Catalog # 145-AR) to immobilized Recombinant Human Activin RIB/ALK4 Fc Chimera (Catalog # 808-AR) coated at 2 µg/mL (100 µL/well). At 20 µg/mL, this antibody will block >90% of the binding.

DATA

Immunocytochemistry

Cripto-1 was detected in immersion fixed human induced pluripotent stem cells (iPSCs) using Mouse Anti-Human/Primate Cripto-1 Monoclonal Antibody (Catalog # MAB2772) at 20 µg/mL for 3 hours at room temperature. Cells were stained using the NorthernLights™ 557-conjugated Anti-Mouse IgG Secondary Antibody (red; Catalog # NL007) and counterstained with DAPI (blue). Specific staining was localized to cytoplasm. View our protocol for Fluorescent ICC Staining of Stem Cells on Coverslips.

PREPARATION AND STORAGE

Reconstitution: Reconstitute at 0.5 mg/mL in sterile PBS.

Shipping: The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

*Small pack size (-SP) is shipped with polar packs. Upon receipt, store it immediately at -20 to -70 °C.

Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.

- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 6 months, -20 to -70 °C under sterile conditions after reconstitution.
Cripto is the founding member of the epidermal growth factor-CriptoFRL1Cryptic (EGF-CFC) family of signaling proteins that function in cancer and various developmental processes. These developmental processes include: formation of the germ layers and dorsal organizer, specification of anterior-posterior and left-right axes, and differentiation of heart muscle (1, 2). Other members of the EGF-CFC family include Cryptic, Xenopus FRL-1 and zebrafish OEP (one-eyed pinhead).

Overall sequence identity between members of the family is low, but they do share several common domains: a variant EGF-like motif, a novel conserved cysteine-rich domain (called CFC domain), and a C-terminal hydrophobic region. Most EGF-CFC members have a glycosyl-phosphatidylinositol (GPI) anchoring site at the C-terminus and exist as extracellular membrane-anchored proteins. However, naturally-occurring soluble isoforms also exist. Human Cripto shares 66% and 28% amino acid identity with mouse Cripto and zebrafish OEP, respectively (2). Despite weak conservation in amino acid identity, EGF-CFC family members appear to function similarly in assays for phenotypic rescue of zebrafish oep mutants (2). Both secreted and membrane bound forms of Cripto demonstrate biological activity (3). Cripto, also known as CFC-2 or TDGF-1 (teratocarcinoma-derived growth factor), was originally isolated from an undifferentiated human teratocarcinoma cell line as a potential oncogene. It is overexpressed in many types of cancers and acts as a growth factor for tumors (4). Genetic evidence from mice and zebrafish points to a role for Cripto as an essential cofactor in Nodal signaling. Cripto and OEP mutants display defects in mesoderm induction and heart morphogenesis, similar to phenotypes seen in Nodal mutants (2). Cripto acts as a cofactor for Nodal by recruiting the Activin type I Receptor, ALK-4, leading to an ActRIIB-ALK4-Cripto-Nodal complex for signaling (1, 3). Cripto also forms a complex with activin and Act RIIs to block activin signaling (5). Studies have shown that other TGF-β superfamily members such as Vg1 and GDF-1 also require EGF-CFC cofactors (6). Cripto can also activate mitogen-activated protein kinase (MAPK) and Akt pathways independently of Nodal by directly binding to a membrane-associated heparan sulfate proteoglycan, glypican-1 (7).

References: