DESCRIPTION

Species Reactivity Human

Specificity Detects human Presenilin-1 N-Terminal Fragment in direct ELISAs and Western blots. In Western blots, no cross-reactivity with recombinant human (rh) Presenilin-1 C-Terminal Fragment, rhPresenilin-2 C-Terminal Fragment, or rhPresenilin-2 N-Terminal Fragment is observed.

Source Monoclonal Mouse IgG2A Clone # 121130

Purification Protein A or G purified from hybridoma culture supernatant

Immunogen E. coli-derived recombinant human Presenilin-1 N-Terminal Fragment

Formulation Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.

*Small pack size (-SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS.

APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

<table>
<thead>
<tr>
<th>Recommended Concentration</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 µg/mL</td>
<td>Recombinant Human Presenilin-1 N-Terminal Fragment</td>
</tr>
</tbody>
</table>

PREPARATION AND STORAGE

Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS.

Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

*Small pack size (-SP) is shipped with polar packs. Upon receipt, store it immediately at -20 to -70 °C.

Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.

- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 6 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND

Presenilin-1 (PS-1) is a 467 amino acid multipass lysosomal membrane protein that is a component of the gamma secretase complex. It is cleaved by endoproteolysis at or near amino acid 298 to generate N- and C-terminal fragments. Some mutations in PS-1 are associated with the risk of early onset familial Alzheimer’s disease.