Human Proinsulin Antibody
Monoclonal Mouse IgG1, Clone # 253629
Catalog Number: MAB13363

DESCRIPTION
Species Reactivity Human
Specificity Detects human Proinsulin in sandwich immunoassays.
Source Monoclonal Mouse IgG1, Clone # 253629
Purification Protein A or G purified from hybridoma culture supernatant
Immunogen E. coli-derived recombinant human Proinsulin
Phe25-Asn110
Accession # P01308
Formulation Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.
*Small pack size (-SP) is supplied as a 0.2 µm filtered solution in PBS.

APPLICATIONS
Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

Human Proinsulin Sandwich Immunoassay

ELISA Capture 2-8 µg/mL Human Proinsulin Antibody (Catalog # MAB13363)
ELISA Detection 0.5-2.0 µg/mL Human Proinsulin Biotinylated Antibody (Catalog # MAB13362)
Standard Recombinant Human Proinsulin (Catalog # 1336-PN)

PREPARATION AND STORAGE
Reconstitution Reconstitute at 0.5 mg/mL in sterile PBS.
Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
*Small pack size (-SP) is supplied with polar packs. Upon receipt, store it immediately at -20 to -70 °C.
Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 6 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND
Proinsulin is synthesized as a single chain, 110 amino acid (aa) prepropeptide that contains a 24 aa signal sequence and an 86 aa proinsulin propeptide. Following removal of the signal peptide, the proinsulin peptide undergoes further proteolysis to generate mature insulin, a 51 aa disulfide-linked dimer that consists of a 30 aa B chain (aa 25-54) bound to a 21 aa A chain (aa 90-110). The 34 aa intervening peptide (aa 55-89) that connects the B and A chains is termed the C-peptide. Human proinsulin shares 84% and 80% aa sequence identity with rat and bovine proinsulin, respectively. Most of the sequence variation between species occurs in the region of the C-peptide (1). This peptide generates a structural conformation that allows for the correct formation of the intrachain disulphide bonds (1). Insulin is a molecule that facilitates the cellular uptake of glucose. This is accomplished by regulating the appearance of membrane glucose transporters. Low insulin levels or lack of insulin is associated with type 2 and type 1 diabetes mellitus, respectively. These conditions are associated with an increased risk for microvascular complications such as retinopathy, nephropathy, and peripheral neuropathy (3). Proinsulin also circulates, but its physiologic role is less well understood. It does possess about 25% of the activity of mature insulin, but it would seem unlikely to be a natural substitute for insulin (4). In type 2 diabetes, an elevated proinsulin to insulin ratio in the circulation is a well-known abnormality (5-9). Perhaps this abnormality represents either compromised proteolytic processing or a general inability to process increased levels of insulin precursor (5). In any event, proinsulin will stimulate amylin secretion by β-cells, and amyloid formation in pancreatic islets that promotes decreased β cell function (10). Studies also suggest that fasting serum proinsulin may be a better predictor of future type 2 diabetes than fasting insulin levels in obese children (11).

References: