DESCRIPTION

Species Reactivity Human

Specificity Detects human Indoleamine 2,3-dioxygenase/IDO in direct ELISA.

Source Monoclonal Mouse IgG, Clone # 700838

Purification Protein A or G purified from hybridoma culture supernatant

Immunogen E. coli-derived recombinant human Indoleamine 2,3-dioxygenase/IDO Ala2-Gly403

Accession # P14902

Conjugate Allophycocyanin

Excitation Wavelength: 620-650 nm

Emission Wavelength: 660-670 nm

Formulation Supplied in a saline solution containing BSA and Sodium Azide. See Certificate of Analysis for details.

Contains <0.1% Sodium Azide, which is not hazardous at this concentration according to GHS classifications. Refer to the Safety Data Sheet (SDS) for additional information and handling instructions.

APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

Recommended Concentration

<table>
<thead>
<tr>
<th>Sample</th>
<th>10 µL/10^6 cells</th>
</tr>
</thead>
</table>

Intracellular Staining by Flow Cytometry

PREPARATION AND STORAGE

Shipping The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage Protect from light. Do not freeze.

- 12 months from date of receipt, 2 to 8 °C as supplied.

BACKGROUND

Indoleamine 2,3-dioxygenase (IDO) is a heme-containing intracellular dioxygenase catalyzing the degradation of the essential amino acid L-tryptophan to N-formylkynurenine (1). This degradation is the first and rate-limiting step of the L-kynurenine pathway (2). IDO is widely expressed in dendritic cells, macrophages, microglia, eosinophils, fibroblasts, endothelial cells, and most tumor cells. In immune cells, its expression is mainly induced by cytokines such as IFN-γ, IFN-α, IFN-β, and IL-10. IDO has an antimicrobial function due to its decreasing the availability of the essential amino acid tryptophan in inflammatory environments (3). Recent studies have demonstrated that IDO induces immunosuppression during infection, pregnancy, transplantation, autoimmunity, and neoplasia (3-5).

References: