

DESCRIPTION

Species Reactivity	Human
Specificity	Detects human DAP12 in Western blots.
Source	Monoclonal Mouse IgG _{2A} Clone # 406209
Purification	Protein A or G purified from hybridoma culture supernatant
Immunogen	Human Dap12 synthetic peptide Accession # O43914
Conjugate	Alexa Fluor 594 Excitation Wavelength: 590 nm Emission Wavelength: 617 nm
Formulation	Supplied 0.2 mg/mL in a saline solution containing BSA and Sodium Azide.

*Contains <0.1% Sodium Azide, which is not hazardous at this concentration according to GHS classifications. Refer to the Safety Data Sheet (SDS) for additional information and handling instructions.

APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. *General Protocols* are available in the Technical Information section on our website.

	Recommended Concentration	Sample
Flow Cytometry	0.25-1 µg/10 ⁶ cells	Human PBMCs

PREPARATION AND STORAGE

Shipping The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage **Protect from light. Do not freeze.**

- 12 months from date of receipt, 2 to 8 °C as supplied.

BACKGROUND

DAP12, also known as TYROBP and KARAP, is a transmembrane protein that functions as a signal transduction adaptor molecule. DAP12 is expressed as a disulfide-linked homodimer that associates with a variety of receptors on NK and myeloid cells. Complex formation is mediated by intramembrane ionic interaction between an aspartic acid residue in DAP12 and a lysine residue in the partnered receptor. Ligation of these receptors can trigger either cell activation or inhibition through the ITAM sequence in DAP12, resulting in activation of Src family tyrosine kinases. Human and mouse DAP12 share 73% amino acid sequence identity.

PRODUCT SPECIFIC NOTICES

This product is provided under an agreement between Life Technologies Corporation and R&D Systems, Inc, and the manufacture, use, sale or import of this product is subject to one or more US patents and corresponding non-US equivalents, owned by Life Technologies Corporation and its affiliates. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The sale of this product is expressly conditioned on the buyer not using the product or its components (1) in manufacturing; (2) to provide a service, information, or data to an unaffiliated third party for payment; (3) for therapeutic, diagnostic or prophylactic purposes; (4) to resell, sell, or otherwise transfer this product or its components to any third party, or for any other commercial purpose. Life Technologies Corporation will not assert a claim against the buyer of the infringement of the above patents based on the manufacture, use or sale of a commercial product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, Cell Analysis Business Unit, Business Development, 29851 Willow Creek Road, Eugene, OR 97402, Tel: (541) 465-8300. Fax: (541) 335-0354.