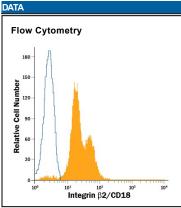


Human Integrin β2/CD18 Fluorescein-conjugated Antibody

Monoclonal Mouse IgG₁ Clone # 212701


Catalog Number: FAB1730F 100 Tests

DESCRIPTION			
Species Reactivity	Human		
Specificity	Detects human Integrin β2/CD18 in direct ELISAs and Western blots. In direct ELISAs, no cross-reactivity with recombinant human Integrin β1 or recombinant mouse Integrin α5 is observed.		
Source	Monoclonal Mouse IgG ₁ Clone # 212701		
Purification	Protein A or G purified from hybridoma culture supernatant		
Immunogen	Mouse myeloma cell line NS0-derived recombinant human Integrin β2/CD18 Gln23-Asn700 Accession # AAA59490		
Conjugate	Fluorescein Excitation Wavelength: 488 nm Emission Wavelength: 515-545 nm (FITC)		
Formulation	Supplied in a saline solution containing BSA and Sodium Azide. See Certificate of Analysis for details.		
	*Contains <0.1% Sodium Azide, which is not hazardous at this concentration according to GHS classifications. Refer to the Safety Data Sheet (SDS) for additional information and handling instructions.		

APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

	Recommended Concentration	Sample
Flow Cytometry	10 μL/10 ⁶ cells	See Below

Detection of Integrin β2/CD18 in Human Peripheral Blood Lymphocytes by Flow Cytometry. Human peripheral blood Lymphocytes were stained with Mouse Anti-Human Integrin β2/CD18 Fluorescein-conjugated Monoclonal Antibody (Catalog # FAB1730F, filled histogram) or isotype control antibody (Catalog # IC002F, open histogram). View our protocol for Staining Membrane-associated Proteins.

PREPARATION AND STORAGE

Shipping The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Protect from light. Do not freeze.

• 12 months from date of receipt, 2 to 8 °C as supplied.

Human Integrin β2/CD18 Fluorescein-conjugated Antibody

Monoclonal Mouse IgG₁ Clone # 212701

Catalog Number: FAB1730F 100 Tests

BACKGROUND

Integrin $\alpha X\beta 2$, also called CD11c/CD18, p150/95 or complement receptor type 4 (CR4), is one of four $\beta 2$ integrins. The non-covalent heterodimer of 150 kDa αX /CD11c and 95 kDa $\beta 2$ /CD18 integrin subunits is expressed on macrophages, dendritic cells and hairy cell leukemias, with lower amounts on other myeloid cells and activated B, NK and some cytotoxic T cells (1-7). Like other integrins, $\alpha X\beta 2$ has multiple activation states (3). In the presence of divalent cations and "inside-out" signaling, $\alpha X\beta 2$ is fully active and extended. The αX vWFA or I-domain, which contains the adhesion sites, forms the N-terminal head region with the αX beta-propeller and the $\beta 2$ vWFA domain (1, 8). In the inactive state, the heterodimer flexes in the center at the αX thigh and calf domains and $\beta 2$ I-EGF domains, impeding access to adhesion sites (1). The 1088 aa human αX /CD11c ECD shares 70-76% aa sequence identity with mouse, rat and canine αX while the 678 aa human $\beta 2$ /CD18 ECD shares 81-83% aa sequence identity with mouse, rat, cow, dog, goat, sheep, and pig $\beta 2$. Potential αX isoforms containing 719 and 725 aa (as compared to full-length 1163 aa αX) lack the vWFA domain and the N-terminus. Active $\alpha X\beta 2$ shares some adhesion partners with $\alpha M\beta 2$ /CD11b/CD18, including complement opsonin fragment iC3b, ICAMs, vWF and fibrinogen, and is expressed on many of the same cells (4-11). However, $\alpha M\beta 2$ activity is often constitutive, while $\alpha X\beta 2$ activity requires cell activation (4-7). $\alpha X\beta 2$ also binds osteopontin, Thy-1, plasminogen, heparin, and proteins with abnormally exposed acidic residues (11-16). The adhesion events are important for proliferation, degranulation, chemotactic migration, and phagocytosis of complement-opsonized particles (5, 6, 9, 11, 12, 16). Mutations of $\beta 2$, especially in the vWFA domain, cause leukocyte adhesion deficiency (LAD-1) and susceptibility to bacterial infections (17).

References:

- 1. Corbi, A.L. et al. (1987) EMBO J. 6:4023.
- 2. Kishimoto, T.K. et al. (1987) Cell 48:681.
- 3. Hynes, R.O. (2002) Cell **110**:673
- 4. Arnaout, M.A. (1990) Blood 75:1037
- 5. Postigo, A.A. et al. (1991) J. Exp. Med. 174:1313.
- 6. Beyer, M. et al. (2005) Respir. Res. 6:70.
- 7. Nicolaou, F. et al. (2003) Blood 101:4033.
- 8. Vorup-Jensen, T. et al. (2003) Proc. Natl. Acad. Sci. USA 100:1873.
- 9. Bilsland, C.A.G. et al. (1994) J. Immunol. 152:4582.
- 10. Pendu, R. et al. (2006) Blood 108:3746.
- 11. Sadhu, C. et al. (2007) J. Leukoc. Biol. 81:1395.
- 12. Schack, L. et al. (2009) J. Immunol. 182:6943.
- 13. Choi, J. et al. (2005) Biochem. Biophys. Res. Commun. 331:557.
- 14. Gang, J. et al. (2007) Mol. Cells 24:240.
- 15. Vorup-Jensen, T. et al. (2007) J. Biol. Chem. 282:30869.
- 16. Vorup-Jensen, T. et al. (2004) Proc. Natl. Acad. Sci. USA 102:1614.
- 17. Kishimoto, T.K. et al. (1987) Cell 50:193.

