ELISpot

Human Latent TGF-β1

Catalog Number EL246

For the quantitative determination of the frequency of cells releasing human latent TGF-β1.

This package insert must be read in its entirety before using this product.
For research use only. Not for use in diagnostic procedures.
INTRODUCTION

Transforming growth factor beta (TGF-β) proteins (including the three closely related mammalian isoforms TGF-β1, 2 and 3) are pleiotropic cytokines that regulate extracellular matrix production, wound healing, immune functions, cell proliferation and differentiation. They belong to the large TGF-β superfamily, which also includes the activins and inhibins, bone morphogenetic proteins (BMPs), and growth/differentiation factors (GDFs) (1, 2).

The TGF-β1 cDNA encodes a 391 amino acid residue (aa) pre-proprotein with a 23 aa signal peptide and a 368 aa proprotein that is proteolytically processed via a furin-like proprotein convertase to generate an N-terminal 256 aa latency-associated peptide (LAP) and the C-terminal 112 aa mature TGF-β1 (3-7). Both LAP and mature TGF-β1 exist as disulfide-linked homodimers. After proteolytic cleavage and secretion, the two homodimers remain non-covalently associated as the small latent TGF-β1 complex. In most cell types, the small latent complex is also covalently linked via LAP to a latent TGF-β binding protein (LTBP) to form a secreted, large latent complex. The TGF-β1 present in the small or the large latent complex is not available for TGF-β receptor binding and activation, and is therefore latent. Whereas LAP is both necessary and sufficient to confer latency to TGF-β1, LTBP facilitates the proper folding and secretion of the small latent complex. Since LTBP is a structural component of the extracellular matrix, it also directs the localization of the latent complex to the extracellular matrix (8-13). To date, four LTBPss that share multiple EGF-like domains and four LTBP and fibrillin-specific eight-cysteine domains have been cloned. Three of the four LTBPss (1, 3, or 4) have been shown to bind the small latent complexes of all TGF-β isoforms (14). The activation of the large and/or small latent TGF-β complexes is an important step that regulates TGF-β functions in vivo. Multiple activation mechanisms, involving protease-dependent (plasmin and matrix-metalloprotease) and protease-independent (binding of LAP to Thrombospondin 1 or a subset of integrins) pathways, have been identified (4, 13, 15-19).

Although mature TGF-1 is highly conserved (>99% aa sequence identity) across mammalian species, the sequences of LAP are more divergent. Human LAP (TGF-β1) shares approximately 85% aa sequence identity with that from mouse, rat and guinea pig. Human LAP (TGF-β1) also shares 98%, 92% and 91% aa sequence identity with canine, porcine, and rhesus macaque LAP (TGF-β1), respectively. Most cells, including hippocampal neurons (20), hepatocytes (21), vascular endothelial cells (22), CD34+ stem cells (23), fetal osteoblasts (24), naive CD4+ T cells (25), breast epithelium (26), macrophages (27, 28), thymic epithelium (29), fibroblasts (30), and platelets (31) can be induced to secrete latent TGF-β1. It is also suggested that B cells produce active TGF-β1 complexed to IgG (32, 33).

The Human Latent TGF-β1 ELISpot assay is designed for the detection of latent TGF-β1 secreting cells at the single cell level, and it can be used to quantitate the frequency of latent human TGF-β1 secreting cells. ELISpot assays are well suited for monitoring immune responses to various stimuli, treatments and therapies, and they have been used for the quantitation of antigen-specific CD4+ and/or CD8+ T cell responses. Other methods for the assessment of antigen-specific T cell responses, such as the chromium release assay with quantitation by limiting dilution, are tedious, and require previous in vitro expansion of T cells for several days. These assays typically are not suitable for measuring infrequent T cell responses that occur at less than 1 in 1000. ELISpot assays are highly reproducible and sensitive, and can be used to measure responses with frequencies well below 1 in 100,000. ELISpot assays do not require prior in vitro expansion of T cells, and they are suitable for high-throughput analysis using only small volumes of primary cells. As such, ELISpot assays are useful tools for research in areas as diverse as antigen recognition, vaccine development, cytokine secretion and the monitoring of various clinical trials.
PRINCIPLE OF THE ASSAY

The enzyme-linked immunospot (ELISpot) assay was originally developed for the detection of individual B cells secreting antigen-specific antibodies (34, 35). This method has since been adapted for the detection of individual cells secreting specific cytokines or other antigens (36, 37). ELISpot assays employ the quantitative sandwich enzyme-linked immunosorbent assay (ELISA) technique.

A monoclonal antibody specific for human LAP (TGF-β1) has been pre-coated onto a polyvinylidene difluoride (PVDF)-backed microplate. Appropriately stimulated cells are pipetted into the wells and the microplate is placed into a humidified 37 °C CO₂ incubator for a specified period of time. During this incubation period, the immobilized antibody in the immediate vicinity of the secreting cells binds secreted latent TGF-β1. After washing away any cells and unbound substances, a biotinylated monoclonal antibody specific for human LAP (TGF-β1) is added to the wells. Following a wash to remove any unbound biotinylated antibody, alkaline-phosphatase conjugated to streptavidin is added. Unbound enzyme is subsequently removed by washing and a substrate solution (BCIP/NBT) is added. A blue-black colored precipitate forms and appears as spots at the sites of cytokine localization, with each individual spot representing an individual latent TGF-β1 secreting cell. The spots can be counted with an automated ELISpot reader system or manually using a stereomicroscope.
LIMITATIONS OF THE PROCEDURE

• FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES.
• The kit should not be used beyond the expiration date on the kit label.
• Do not mix or substitute reagents with those from other lots or sources.
• Any variation in pipetting and washing techniques, incubation time or temperature, or kit age can cause variation in the density of spots, intensity of specific staining, and background levels.

TECHNICAL HINTS

• To minimize edge effect, place the microplate (bottom down) onto a piece of aluminum foil (about 4 x 6 inches). Add cells, cover the microplate with the lid, and shape the foil around the edges of the microplate. The foil may be left on the microplate for the rest of the experimental procedure and removed after the BCIP/NBT Substrate has been washed off.
• Do not remove the flexible plastic underdrain on the bottom of the microplate before or during incubation and development. It may damage the PVDF membrane filter. The underdrain cover may be removed only after completing the incubation with the BCIP/NBT Substrate.
• Do not touch PVDF membrane filters with pipette tips when pipetting cells and reagents to avoid damage to the membrane.
• Upon completing the experiment, do not dry the microplate at a temperature above 37 °C. It may cause the PVDF membrane filters to crack.
• The 96-well microplate provided in this kit is not sterile. Due to the short incubation period and the presence of antibiotics in the culture media, microbial contamination has not been shown to be an issue with this ELISpot procedure.
• This kit is designed for single use only. The layout of the assay should be carefully planned to maximize the use of the provided microplate and reagents.
• The controls listed are recommended for each ELISpot experiment:

 Positive Control - Use recombinant human LAP (TGF-β1).
 Unstimulated/Negative Control - Use the same number of unstimulated cells as stimulated cells.
 Background Control - Use sterile culture media.
 Detection Antibody Control - Substitute phosphate buffered saline for detection antibody.
Incubate latent TGF-β1 secreting cells in an antibody-coated well.

Remove cells by washing. Secreted latent TGF-β1 is captured by the immobilized antibody.

Incubate with biotinylated anti-latent TGF-β1 antibody.

Remove unbound biotinylated antibody by washing. Incubate with alkaline phosphatase conjugated streptavidin.

Wash to remove unbound enzyme.

Add substrate and monitor the formation of colored spots. Analyze using either an ELISpot or dissection microscope.
MATERIALS PROVIDED & STORAGE CONDITIONS

Store the unopened kit at 2-8 °C. Do not use past kit expiration date.

Note: This kit is validated for single use only. Results obtained using previously opened or reconstituted reagents may not be reliable.

<table>
<thead>
<tr>
<th>PART</th>
<th>PART #</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human Latent TGF-β1 Microplate</td>
<td>892205</td>
<td>96-well PVDF-backed microplate coated with a monoclonal antibody specific for human LAP (TGF-β1).</td>
</tr>
<tr>
<td>Human Latent TGF-β1 Detection Antibody Concentrate</td>
<td>892206</td>
<td>150 μL of a 120X concentrated solution of biotinylated monoclonal antibody specific for human LAP (TGF-β1) with preservatives.</td>
</tr>
<tr>
<td>Streptavidin-AP Concentrate A</td>
<td>895358</td>
<td>150 μL of a 120X concentrated solution of Streptavidin conjugated to Alkaline Phosphatase with preservatives.</td>
</tr>
<tr>
<td>Dilution Buffer 1</td>
<td>895307</td>
<td>12 mL of a buffer for diluting human LAP (TGF-β1) Detection Antibody Concentrate with preservatives.</td>
</tr>
<tr>
<td>Dilution Buffer 2</td>
<td>895354</td>
<td>12 mL of a buffer for diluting Streptavidin-AP Concentrate A with preservatives.</td>
</tr>
<tr>
<td>Wash Buffer Concentrate</td>
<td>895308</td>
<td>50 mL of a 10X concentrated solution of a buffered surfactant with preservative.</td>
</tr>
<tr>
<td>BCIP/NBT Substrate</td>
<td>895867</td>
<td>12 mL of a stabilized mixture of 5-Bromo-4-Chloro-3' Indolylphosphate p-Toluidine Salt (BCIP) and Nitro Blue Tetrazolium Chloride (NBT).</td>
</tr>
<tr>
<td>Human Latent TGF-β1 Positive Control</td>
<td>892207</td>
<td>8 ng of recombinant human LAP (TGF-β1) with preservatives; lyophilized.</td>
</tr>
</tbody>
</table>

OTHER SUPPLIES REQUIRED

- Dissection microscope or an ELISpot reader.
- Pipettes and pipette tips.
- Deionized water.
- Squirt bottle, manifold dispenser, or automated microplate washer.
- 500 mL graduated cylinder.
- 37 °C CO₂ incubator.
- Sterile culture media.
PRECAUTIONS

Some components of this kit contain sodium azide, which may react with lead and copper plumbing to form explosive metallic azides. Flush with large volumes of water during disposal.

BCIP/NBT is toxic if swallowed, in contact with skin, or if inhaled. It is a highly flammable liquid and vapor may cause serious irritation and damage to organs. Do not eat, drink, or smoke when using this product. Do not breathe fumes. Use only in a well-ventilated area. Keep away from heat, sparks, open flames, and hot surfaces. Keep the container tightly closed.

Some components in this kit contain a preservative which may cause an allergic skin reaction. Avoid breathing mist.

Wear protective gloves, clothing, eye, and face protection. Wash hands thoroughly after handling. Refer to the SDS on our website prior to use.

REAGENT PREPARATION

Bring all reagents to room temperature, except the Human Latent TGF-β1 Detection Antibody Concentrate and Dilution Buffer 1, which should remain at 2-8 °C.

Wash Buffer - If crystals have formed in the concentrate, warm to room temperature and mix gently until the crystals have completely dissolved. To prepare wash buffer, add 50 mL of Wash Buffer Concentrate to 450 mL of deionized water and mix well.

Human Latent TGF-β1 Positive Control - Reconstitute the lyophilized Human Latent TGF-β1 Positive Control with 250 μL of culture medium that is used to incubate cells.

Detection Antibody Mixture - Tap or vortex the vial to release reagent collected in the cap. Transfer 100 μL of Human Latent TGF-β1 Detection Antibody Concentrate into the vial labeled Dilution Buffer 1 and mix well. For optimal performance, prepare the Detection Antibody immediately before use.

Streptavidin-AP Concentrate A - Tap or vortex the vial to release reagent collected in the cap. Transfer 100 μL of Streptavidin-AP Concentrate A into the vial labeled Dilution Buffer 2 and mix well. For optimal performance, prepare the Streptavidin-AP immediately before use.

SAMPLE PREPARATION

The types of effector and responder cells used, method of cell separation, mode of stimulation, and length of incubation are to be determined by each investigator.
ASSAY PROCEDURE

Bring all reagents to room temperature, except the diluted Detection Antibody Mixture, which should remain at 2-8 °C. All samples and controls should be assayed at least in duplicate.

1. Fill all wells in the microplate with 200 μL of sterile culture media and incubate for approximately 20 minutes at room temperature.

2. When cells are ready to be plated, aspirate the culture media from the wells. Immediately add 100 μL of the appropriate cells or controls to each well (see Technical Hints for appropriate controls).

3. Incubate cells in a humidified 37 °C CO₂ incubator. Optimal incubation time for each stimulus should be determined by the investigator. Do not disturb the cells during the incubation period.

4. Aspirate each well and wash, repeating the process three times for a total of four washes. Wash by filling each well with Wash Buffer (250-300 μL) using a squirt bottle, manifold dispenser, or autowasher. Complete removal of liquid at each step is essential to good performance. After the last wash, remove any remaining Wash Buffer by aspirating or decanting. Invert the plate and blot it against clean paper towels.
 Note: Adjust the height of the prongs of the manifold dispenser or autowasher to prevent damage to the membranes.

5. Add 100 μL of diluted Detection Antibody Mixture into each well, and incubate overnight at 2-8 °C. Alternatively, incubation with detection antibodies can be done for 2 hours at room temperature on a rocking platform.

6. Repeat the wash procedure described in step 4.

7. Add 100 μL of diluted Streptavidin-AP Concentrate A into each well, and incubate for 2 hours at room temperature.

8. Repeat the wash procedure described in step 4.

9. Add 100 μL of BCIP/NBT Substrate into each well, and incubate for 1 hour at room temperature. **Protect from light.**

10. Decant the BCIP/NBT Substrate solution from the microplate and rinse the microplate with deionized water. Invert the microplate and tap to remove excess water. Remove the flexible plastic underdrain from the bottom of the microplate, wipe the bottom of the plate thoroughly with paper towels and dry completely either at room temperature (60-90 minutes) or 37 °C (15-30 minutes).
CALCULATION OF RESULTS

The developed microplate can be analyzed by counting spots using either a dissection microscope or a specialized automated ELISpot reader. Specific spots are round and have a dark center with slightly fuzzy edges. Quantitation of results can be done, for example, by calculating the number of spot forming cells (SFC) per number of cells added to the well.

REPRODUCIBILITY DATA

Transfected CHO cells \((5 \times 10^3 \text{ cells/mL})\) were incubated overnight at 37 °C in a 5% CO\textsubscript{2} incubator. The sample was assayed in seven wells according to the procedure and analyzed with a dissection microscope.

<table>
<thead>
<tr>
<th>Well</th>
<th>Number of Spots Counted</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>78</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
</tr>
<tr>
<td>3</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>75</td>
</tr>
<tr>
<td>5</td>
<td>78</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
</tr>
<tr>
<td>7</td>
<td>77</td>
</tr>
</tbody>
</table>
TROUBLESHOOTING GUIDE

<table>
<thead>
<tr>
<th>OBSERVATION</th>
<th>PROBLEM</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Following the incubation with BCIP/NBT Substrate and rinsing the microplate with deionized water, the dark blue background color of the filter membrane attenuates visualization and quantitation of spots.</td>
<td>The membrane is wet.</td>
<td>Microplates cannot be analyzed accurately until the PVDF filter membranes are completely dry. Wait until the membrane becomes dry (typically 15-30 minutes at 37 °C or 60-90 minutes at room temperature).</td>
</tr>
<tr>
<td>The number of spots in the wells that contained the cells is high, but their contrast as well as intensity of staining in the Positive Control wells is low.</td>
<td>Underdevelopment; perhaps the result of using Streptavidin-AP and/or BCIP/NBT solutions that have not been brought to room temperature.</td>
<td>Warm the appropriate reagents to room temperature before adding them to the wells.</td>
</tr>
<tr>
<td>The number of spots in the wells that contained cells is lower than expected whereas Positive Control wells turned blue-black.</td>
<td>Cell stimulation problem.</td>
<td>Ensure that reagents used to stimulate the cytokine release from the cells retained their biological activity. One way to check is to perform immunocytochemistry on fixed cells after stimulation.</td>
</tr>
<tr>
<td>Following incubation with BCIP/NBT Substrate and drying the microplate, the density of the spots makes them difficult to quantify.</td>
<td>Too many cells were added to the wells.</td>
<td>Make dilutions of cells (i.e. 1×10^5, 5×10^5, 1×10^4, 5×10^4, 1×10^3 cells per well) to determine the optimal number of cells that will result in formation of distinct spots.</td>
</tr>
</tbody>
</table>
REFERENCES

All trademarks and registered trademarks are the property of their respective owners.