

Mouse FGF-8 Biotinylated Antibody

Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: BAF423

DESCRIPTION	
Species Reactivity	Mouse
Specificity	Detects mouse FGF-8 in Western blots. In Western blots, less than 1% cross-reactivity with recombinant human (rh) FGF basic, rhFGF acidic, rhFGF-4, rhFGF-5, rhFGF-6, rhFGF-7, and rhFGF-9 (under non-reducing reducing conditions) is observed.
Source	Polyclonal Goat IgG
Purification	Antigen Affinity-purified
Immunogen	E. coli-derived recombinant mouse FGF-8b Gln23-Arg215 Accession # NP_006110
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details.
APPLICATIONS Please Note: Optimal dilution	ons should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website. Recommended Sample Concentration
Western Blot	0.1 μg/mL Recombinant Mouse FGF-8 b Isoform (Catalog # 423-F8)
PREPARATION AND S	STORAGE Reconstitute at 0.2 mg/mL in sterile PBS.
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution.

BACKGROUND

FGF-8 is a member of the fibroblast growth factor family that was originally discovered as a growth factor essential for the androgen-dependent growth of mouse mammary carcinoma cells (1-3). Alternate splicing of mouse FGF-8 mRNA generates eight secreted isoforms, designated a-h, but only FGF-8a, b, e and f exist in humans (4). FGF-8 contains a 22 amino acid (aa) signal sequence, an N-terminal domain that varies according to the isoform (30 aa for FGF-8b; 20 aa for the shortest, FGF-8a), a 125 aa FGF domain and a 37 aa proline-rich C-terminal sequence. The FGF domain of FGF-8 shares the most aa identity with FGF17 (75%) and FGF-18 (67%), and the three form an FGF subfamily (2). Mouse FGF-8b shares 100% aa identity with human FGF-8b. FGF-8 is widely expressed during embryogenesis, and mediates epithelial-mesenchymal transitions. It plays an organizing and inducing role during gastrulation, and regulates patterning of the midbrain/hindbrain, eye, ear, limbs and heart in the embryo (2, 5-8). The isoforms may play different roles in development. FGF-8b shows the strongest receptor affinity and oncogenic transforming capacity although FGF-8a and FGF-8e are also transforming and have been found in human prostate, breast or ovarian tumors (1, 5, 9-12). FGF-8 shows limited expression in the normal adult, but low levels are found in the reproductive and genitourinary tract, peripheral leukocytes and bone marrow hematopoietic cells (3, 9, 13).

6 months, -20 to -70 °C under sterile conditions after reconstitution.

References:

- 1. Mattila, M.M. and P.L. Harkonen (2007) Cytokine Growth Factor Rev. 18:257.
- 2. Reuss, B. and O. von Bohlen und Halbach (2003) Cell Tiss. Res. 313:139.
- 3. Tanaka, A. et al. (1992) Proc. Natl. Acad. Sci. USA 89:8928.
- 4. Gemel, J. et al. (1996) Genomics **35**:253
- Olsen, S.K. et al. (2006) Genes Dev. 20:185.
- 6. Crossley, P.H. et al. (1996) Cell, 84:127.
- 7. Heikinheimo, M. et al. (1994) Mech. Dev. 48:129.
- 8. Sun, X. et al. (1999) Genes Dev. 13:1834.
- 9. Ghosh, A.K. et al. (1996) Cell Growth Differ. 7:1425.
- 10. Mattila, M.M. et al. (2001) Oncogene 20:2791.
- 11. Valve, E. et al. (2000) Int. J. Cancer 88:718.
- 12. Valve, E.M. et al. (2001) Lab. Invest. 81:815.
- 13. Nezu, M. et al. (2005) Biochem. Biophys. Res. Commun. 335:843.

