

## Mouse Neuropoietin/NP Biotinylated Antibody

Antigen Affinity-purified Polyclonal Goat IgG Catalog Number: BAF2709

| DESCRIPTION        |                                                                                                                            |
|--------------------|----------------------------------------------------------------------------------------------------------------------------|
| Species Reactivity | Mouse                                                                                                                      |
| Specificity        | Detects mouse Neuropoietin/NP in Western blots.                                                                            |
| Source             | Polyclonal Goat IgG                                                                                                        |
| Purification       | Antigen Affinity-purified                                                                                                  |
| Immunogen          | E. coli-derived recombinant mouse Neuropoietin/NP Ala23-Ala204 Accession # P83714                                          |
| Formulation        | Lyophilized from a 0.2 µm filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details. |

## APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

|              | Recommended<br>Concentration | Sample                                                |
|--------------|------------------------------|-------------------------------------------------------|
| Western Blot | 0.1 μg/mL                    | Recombinant Mouse Neuropoietin/NP (Catalog # 2709-NP) |

| PREPARATION AND STORAGE |                                                                                                                         |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Reconstitution          | Reconstitute at 0.2 mg/mL in sterile PBS.                                                                               |  |
| Shipping                | The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. |  |
| Stability & Storage     | Use a manual defrost freezer and avoid repeated freeze-thaw cycles.                                                     |  |
|                         | <ul> <li>12 months from date of receipt, -20 to -70 °C as supplied.</li> </ul>                                          |  |
|                         | <ul> <li>1 month, 2 to 8 °C under sterile conditions after reconstitution.</li> </ul>                                   |  |
|                         | • 6 months -20 to -70 °C under sterile conditions after reconstitution                                                  |  |

## BACKGROUND

Neuropoietin (NP; also known as cardiotrophin-2) is a 22 kDa member of the IL-6 family of cytokines. Considered to be the product of a gene duplication event involving cardiotrophin-1 (CT-1), it helps to define a subfamily within the IL-6 family that includes CT-1, CLC and CTNF. Mouse neuropoietin is synthesized as a 204 amino acid (aa) precursor that contains a 22 aa signal sequence and a 192 aa mature segment. The secreted molecule is characterized by the presence of four α-helices, typical of hematopoietic superfamily molecules. Mature mouse neuropoietin shares 88%, 90% and 95% aa identity to chimpanzee, canine and rat neuropoietin, respectively. The human gene is suggested to have evolved towards a pseudogene, a point of interest in that neuropoietin is reported to signal through the CNTF complex (i.e., gp130, CNTF Rα and LIF R). NP will mediate motor neuron survival, and appears to be selectively expressed in the embryo by tissues involved with nervous system development (1).

## References:

1. Derouet, D. et al. (2004) Proc. Natl. Acad. Sci. USA 101:4827.

