Biotinylated Recombinant Human Siglec-2/CD22 His-tag Avi-tag

Catalog Number: AVI10191

DESCRIPTION

Source
Chinese Hamster Ovary cell line, CHO-derived human Siglec-2/CD22 protein

Human Siglec-2/CD22
(Aap20-Arg687)
Accession #: CAA42006.1

<table>
<thead>
<tr>
<th>N-terminal Sequence</th>
<th>C-terminus</th>
</tr>
</thead>
<tbody>
<tr>
<td>GGGGGGGGGGS</td>
<td>HHHHHHH</td>
</tr>
</tbody>
</table>

Avi-tag

SPECIFICATIONS

SDS-PAGE
92-118 kDa, under reducing conditions

Activity

Measured by its binding ability in a functional ELISA.

When Human Siglec-2/CD22 (Epratuzumab, Novus Catalog #: NBP2-75189) is immobilized at 0.5 μg/mL (100 μL/well), Biotinylated Recombinant Human Siglec-2/CD22 His-tag Avi-tag (Catalog #: AVI10191) binds with an ED₅₀ of 0.3-2.4 ng/mL.

Measured by the ability of the immobilized protein to support the adhesion of human red blood cells. Kelm, S. et al. (1994) Current Biology 4:965.

The ED₅₀ for this effect is 0.1-0.8 μg/mL.

Endotoxin Level

<1.0 EU per 1 μg of the protein by the LAL method.

Purity

>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.

Formulation

Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution

Reconstitute at 500 μg/mL in PBS.

Shipping

The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

- Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

DATA

Binding Activity

When Human Siglec-2/CD22 (Epratuzumab, Novus Catalog #: NBP2-75189) is immobilized at 0.5 μg/mL, 100 μL/well, Biotinylated Recombinant Human Siglec-2/CD22 His-tag Avi-tag (Catalog #: AVI10191) binds with an ED₅₀ of 0.3-2.4 ng/mL.

SDS-PAGE

2 μg/lane of Biotinylated Recombinant Human Siglec-2/CD22 His-tag Avi-tag (AVI10191) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue staining, showing bands at 92-118 kDa.
Siglecs are type I transmembrane proteins that belong to the immunoglobulin (Ig) superfamily and function as mammalian lectins (1). They are characterized by an extracellular domain consisting of various numbers of Ig domains with a conserved N-terminal V-set Ig ligand-binding domain. This binds species-specific sialic acid motifs on protein and lipid scaffolds to regulate intracellular signaling pathways (2). The cytoplasmic tail has signaling motifs, in most cases immunoreceptor tyrosine-based inhibitory motif (ITIM) (3). Human Siglec-2, also known as B cell antigen CD22 or B lymphocyte cell adhesion molecule (BL-CAM), is a B cell restricted glycoprotein that is expressed in the cytoplasm of progenitor B and pre B cells and on the surface of mature B cells. Two distinct human Siglec-2/CD22 cDNAs that arise from differential RNA processing of the same gene have been isolated. The predominant Siglec-2/CD22 beta encodes an 847 amino acid (aa) polypeptide with a hydrophobic signal peptide, an N-terminal Ig-like V type domain, six Ig-like C2 type domains, a transmembrane region and a cytoplasmic tail with 4 immunoreceptor tyrosine-based inhibition motifs (ITIMs) (4). The variant Siglec-2/CD22 alpha encodes a 647 aa polypeptide missing two Ig-like C2 type domains and has a truncated (23 aa) cytoplasmic tail (5). Mature human Siglec-2 beta consists of a 668 amino acid (aa) extracellular domain (ECD), a 19 aa transmembrane segment, and a 141 aa cytoplasmic domain. Within the ECD, human Siglec-2 shares 59% and 58% aa sequence identity with the mouse and rat Siglec-2, respectively. Siglec-2/CD22 is an adhesion molecule that preferentially binds alpha 2,6-linked sialic acid on the same (cis) or adjacent (trans) cells. Interaction of CD22 with trans ligands on opposing cells was found to be favored over the binding of ligands in cis (6). Besides its role as an adhesion molecule, Siglec-2/CD22 is a coreceptor that physically interacts with B-cell receptor (BCR) and is rapidly phosphorylated upon BCR ligation. It negatively regulates BCR signals by recruiting tyrosine phosphatase SHP-1 to its ITIMs. Phosphorylated Siglec-2/CD22 is an adhesion molecule that preferentially binds alpha 2,6-linked sialic acid on the same (cis) or adjacent (trans) cells. Interaction of CD22 with trans ligands on opposing cells was found to be favored over the binding of ligands in cis (6). Besides its role as an adhesion molecule, Siglec-2/CD22 is a coreceptor that physically interacts with B-cell receptor (BCR) and is rapidly phosphorylated upon BCR ligation. It negatively regulates BCR signals by recruiting tyrosine phosphatase SHP-1 to its ITIMs. Phosphorylated Siglec-2/CD22 can also interact with other intracellular effector proteins such as Syk, PLC gamma, PI3 kinase and Grb-2, suggesting it may play a role in positive signaling (7-9). Another function of CD22 is that it mediates the anti-phagocytic effect of α2,6-linked sialic acid, and inhibition of CD22 promotes the clearance of myelin debris, amyloid-β oligomers and α-synuclein fibrils in vivo (10). CD22 also plays a role in autoimmunity and has great potential for CD22-based immunotherapeutics for the treatment of autoimmune diseases such as systemic lupus erythematosus (SLE) (11).

References: