

MATERIAL DATA SHEET

Recombinant Human Ataxin UIM Domains Agarose Cat. # AM-115

The Ubiquitin-interacting Motif (UIM) is an alpha-helical Ubiquitin-binding domain found in many proteins that recognizes and traffics ubiquitinated cargo (1, 2). Ataxin-3, a deubiquitinating enzyme that contains three consecutive UIM motifs (amino acids (aa) 224-243, 244-263, 331-348), functions as a mixed lineage, chain editing enzyme that recognizes and binds K48-linked and K63-linked poly-Ubiquitin chains (3-5). The UIM domain of Ataxin-3 (aa 224-348) preferentially interacts with four or more Ubiquitin units of K48-linked or K63-linked poly-Ubiquitin chains or ubiquitinated substrates that contain these linkages (4, 6, 7).

This protein can be used for the isolation and identification of K48-linked (preferentially) or K63-linked poly-Ubiquitin chains or ubiquitinated substrates containing these linkages.

Product Information

Quantity: 250 µl

Source: *E. coli*-derived
Accession # P54252-1

Stock: Supplied as a 50% slurry in HEPES buffered saline with 1 mM Sodium Azide.

Use & Storage

Use: Ataxin UIM-agarose is ideal for the enrichment of known Ataxin UIM-interacting proteins as well as the discovery of novel Ataxin UIM-interacting proteins. We recommend equilibrating the resin by washing with 5-10 mL of your desired aqueous buffer.

Storage: **Do not freeze.**

- 3 months from date of receipt, 2 to 8 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after opening.

Literature

References:

1. Sgourakis, N.G. *et al.* (2010) *J. Mol. Biol.* **396**:1128.
2. Hurley, J.H. *et al.* (2006) *Biochem. J.* **399**:361.
3. Albrecht, M. *et al.* (2004) *Eur. J. Biochem.* **271**:3155.
4. Burnett, B. *et al.* (2003) *Hum. Mol. Genet.* **12**:3195.
5. Mao, Y. *et al.* (2005) *Proc. Natl. Acad. Sci. USA* **102**:12700.
6. Berke, S.J. *et al.* (2005) *J. Biol. Chem.* **280**:32026.
7. Winborn, B.J. *et al.* (2008) *J. Biol. Chem.* **283**:26436.

For research use only. Not for use in humans.