DESCRIPTION

Species Reactivity
Human

Specificity
Detects human FcεRIα in direct ELISAs.

Source
Polyclonal Sheep IgG

Purification
Antigen Affinity-purified

Immunogen
Mouse myeloma cell line NS0-derived recombinant human FcεRIα
Val26-Gln205
Accession # NP_001992

Formulation
Lyophilized from a 0.2 μm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.

*Small pack size (-SP) is supplied either lyophilized or as a 0.2 μm filtered solution in PBS.

APPLICATIONS

Please Note:
Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

<table>
<thead>
<tr>
<th>Recommended Concentration</th>
<th>Sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow Cytometry</td>
<td>2.5 μg/10⁶ cells</td>
</tr>
<tr>
<td>CyTOF-ready</td>
<td>Ready to be labeled using established conjugation methods. No BSA or other carrier proteins that could interfere with conjugation.</td>
</tr>
</tbody>
</table>

DATA

Flow Cytometry
Detection of FcεRIα in Human Blood Granulocytes by Flow Cytometry. Human peripheral blood granulocytes were stained with Sheep Anti-Human FcεRIα Antibody (Catalog # AF6678, filled histogram) or control antibody (Catalog # 5-001-A, open histogram), followed by Allophycocyanin-conjugated Anti-Sheep IgG Secondary Antibody (Catalog # F0127).

PREPARATION AND STORAGE

Reconstitution
Sterile PBS to a final concentration of 0.2 mg/mL

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
*Small pack size (-SP) is shipped with polar packs. Upon receipt, store it immediately at -20 to -70 °C.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 6 months, -20 to -70 °C under sterile conditions after reconstitution.
The α subunit of the high affinity IgE receptor (FcεRIα or FcεRIA) is an IgE-binding type I transmembrane glycoprotein of the multichain immune recognition (MIRR) family (1, 2). The receptor, FcεRI, is a tetrameric complex of one α, one β and two γ subunits (αβγ2) on mast cells and basophils (1). An alternate trimeric form (αγ2) is expressed on human, but not rodent, mast cells, basophils, eosinophils and professional antigen presenting cells (3). While the γ subunit is essential for expression of FcεRI on the cell surface and for cell signaling, the β subunit, when present, increases the half-life of the FcεRI complex on the cell surface (3, 4). An isoform of the β subunit, βT, blocks processing of the α subunit and its cell surface expression (2, 3, 5). Human FcεRIα cDNA encodes 257 amino acids (aa) including a 25 aa signal sequence, a 180 aa extracellular domain containing two Ig-like domains that bind IgE and an endoplasmic reticulum retention motif, a 21 aa transmembrane domain with a charged amino acid (Asp219) that contributes to intracellular transport, and a 32 aa cytoplasmic sequence (1, 3, 6). Human FcεRIα shares 50–62% aa sequence identity with mouse, rat, equine, ovine, bovine, porcine and canine FcεRIα.

Binding of IgE alone increases surface expression of FcεRI, while crosslinking of IgE/FcεRI complexes by IgE ligands (allergens) initiates receptor internalization and signaling (2, 4, 5). Mast cell and basophil activation by IgE/FcεRI crosslinking causes degranulation, releasing histamine, leukotrienes, prostaglandins, and other mediators of immediate- and late-phase allergic reactions. Circulating autoantibodies that crosslink FcεRI are often found in patients with chronic urticaria (7). FcεRI on human antigen presenting cells mediates uptake and processing of allergens for presentation by class II MHC (2, 3). FcεRI expression on human DC and Langerhans cells is up-regulated during allergic reactions (atopy) and correlates with serum IgE concentration (3).

References: