

Human Hemopexin Alexa Fluor® 488-conjugated Antibody

Antigen Affinity-purified Polyclonal Sheep IgG Catalog Number: AF4490G

100 µg

DESCRIPTION	
Species Reactivity	Human
Specificity	Detects human Hemopexin in direct ELISAs.
Source	Polyclonal Sheep IgG
Purification	Antigen Affinity-purified
Immunogen	Mouse myeloma cell line NS0-derived recombinant human Hemopexin Thr24-His462 Accession # P02790
Conjugate	Alexa Fluor 488 Excitation Wavelength: 488 nm Emission Wavelength: 515-545 nm
Formulation	Supplied 0.2mg/ml in 1X PBS with RDF1 and 0.09% Sodium Azide
	*Contains <0.1% Sodium Azide, which is not hazardous at this concentration according to GHS classifications. Refer to the Safety Data Sheet (SDS) for additional information and handling instructions.

APPLICATIONS

Please Note: Optimal dilutions should be determined by each laboratory for each application. General Protocols are available in the Technical Information section on our website.

Immunohistochemistry Optimal dilution of this antibody should be experimentally determined.

China | info.cn@bio-techne.com TEL: 400.821.3475

PREPARATION AND STORAGE

Shipping	The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage	Protect from light. Do not freeze. 12 months from date of receipt, 2 to 8 °C as supplied

BACKGROUND

Hemopexin (HPX) is a 60 kDa plasma glycoprotein with two four-bladed β -propeller folds. This structural motif has been found in other proteins including collagenases and provides sites for protein-protein interactions (1-3). The liver is the major synthesizing organ. Expression in the central nervous system, in the retina, and in peripheral nerves has also been observed. Hemopexin belongs to the family of the acute-phase proteins whose synthesis is induced after an inflammatory event. Hemopexin participates in maintaining and recycling the iron pool by utilizing its high binding affinity toward heme composed of protoporphyrin IX and iron. It also functions in preventing oxidation caused by heme after hemolysis. Hydrophobic heme molecules can intercalate into lipid membranes and participate in the oxidation of lipid membrane components through the Fenton reaction resulting in lipid peroxidation. Hemopexin undergoes a conformational change upon the binding of heme. The conformational change allows hemopexin to interact with a specific receptor, forming a complex which is then internalized. In the plasma, it is likely that heme binds albumin (35-55 g/L) first because of the higher concentration of albumin in plasma than hemopexin (0.5-1.2 g/L), and is then transferred to hemopexin, which has a much higher affinity ($K_d \sim 1 \text{ pM}$) toward heme. Heme concentrations in plasma increase after hemolysis, which is associated with several pathological conditions such as reperfusion injury and ischemia.

PRODUCT SPECIFIC NOTICES

This product is provided under an agreement between Life Technologies Corporation and R&D Systems, Inc, and the manufacture, use, sale or import of this product is subject to one or more US patents and corresponding non-US equivalents, owned by Life Technologies Corporation and its affiliates. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product only in research conducted by the buyer (whether the buyer is an academic or for-profit entity). The sale of this product is expressly conditioned on the buyer not using the product or its components (1) in manufacturing; (2) to provide a service, information, or data to an unaffiliated third party for payment; (3) for therapeutic, diagnostic or prophylactic purposes; (4) to resell, sell, or otherwise transfer this product or its components to any third party, or for any other commercial purpose. Life Technologies Corporation will not assert a claim against the buyer of the infringement of the above patents based on the manufacture, use or sale of a commercial product developed in research by the buyer in which this product or its components was employed, provided that neither this product nor any of its components was used in the manufacture of such product. For information on purchasing a license to this product for purposes other than research, contact Life Technologies Corporation, Cell Analysis Business Unit, Business Development, 29851 Willow Creek Road, Eugene, OR 97402, Tel: (541) 465-8300. Fax: (541) 335-0354.

Rev. 9/15/2025 Page 1 of 1

Global | bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL: 1.612.379.2956