

Recombinant Human C1qL4

Catalog Number: 9758-TN

DESCRIPTION	
Source	E. coli-derived human C1qL4 protein Gly105-Asp238, with an N-terminal Met and 6-His tag Accession # Q86Z23
N-terminal Sequence Analysis	Met
Predicted Molecular Mass	16 kDa
SPECIFICATIONS	
SDS-PAGE	13 kDa, reducing conditions
Activity	Measured by its binding ability in a functional ELISA. When Recombinant Human C1qL4 is immobilized at 2 μg/mL, 100 μL/well, the concentration of Recombinant Human BAI2 Fc Chimera (Catalog # 9338-BA) that produces 50% of the optimal binding response is 2-10 μg/mL.
Activity Endotoxin Level	When Recombinant Human C1qL4 is immobilized at 2 μg/mL, 100 μL/well, the concentration of Recombinant Human BAI2 Fc Chimera

PREPARATION AND STORAGE	
Reconstitution	Reconstitute at 500 µg/mL in water.
Shipping	The product is shipped with polar packs. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
	 12 months from date of receipt, -20 to -70 °C as supplied.
	 1 month, 2 to 8 °C under sterile conditions after reconstitution.
	 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Lyophilized from a 0.2 µm filtered solution in Tris, NaCl and TCEP with Trehalose. See Certificate of Analysis for details.

BACKGROUND

Formulation

C1qTNF11 (CTRP11), also known as C1qL4, is an approximately 29 kDa member of the C1qTNF family of secreted proteins (1, 2). Mature human C1qTNF11/C1qL4 contains two distinct domains: a collagen-like region and one C1q-like domain, and can form disulfide-linked heteromers with C1qTNF14/C1qL1 (3, 4). The C1qTNF11/C1qL4 gene is conserved in human, chimpanzee, dog, mouse, rat, zebrafish, and frog. Within the C1q-like domain, human C1qTNF11/C1qL4 shares 100% amino acid (aa) sequence identity with that of mouse, monkey and rat. C1qTNF11/C1qL4 is expressed predominantly in testis and adipocytes, and also at a lower level in skeletal muscle and kidney (4), hippocampus, and cerebral cortex (5). Similar to C1qTNF13/C1qL3, C1qTNF10/C1qL2, and C1qTNF14/C1qL1, C1qTNF11/C1qL4 binding to BAI3 in the cerebral cortex and on cerebellar Purkinje cells (5-8). C1qTNF11/C1qL4 binding to BAI3 induces the formation and maintenance of excitatory synapses between climbing fibers and parallel fibers with Purkinje cells (5, 7). Our in house assay shows that C1qTNF11/C1qL4 also binds to BAI-2. In addition, C1qTNF11/C1qL4 has been reported to promote angiogenesis via activation of the ERK pathway in HUVEC cells mediated by BAI3 (9). Conversely, in adipocytes, C1qTNF11/C1qL4 treatment decreased ERK1/2 signaling and inhibited adipogenesis (4).

References:

- 1. Ghebrehiwet, B. et al. (2012) Front. Immunol. 3: 52.
- 2. Yuzaki, M. (2010) Eur. J. Neurosci. 32:191.
- 3. Ressl, S. et al. (2015) Structure 23:688.
- 4. Wei, Z. et al. (2013) J. Biol. Chem. 288:10214.
- 5. Sigoillot, S.M. et al. (2015) Cell Rep. **10**:820.
- Lanoue, V. et al. (2013) Mol. Psychiatry 18:943.
 Kakegawa, W. et al. (2015) Neuron 85:316.
- 8. Bolliger, M.F. et al. (2011) Proc. Natl. Acad. Sci. USA 108:2534.
- 9. Liu, F. et al. (2017) Mol. Cell. Biochem. 424:57.

