Recombinant Human VEGF-C

Catalog Number: 9199-VC

DESCRIPTION

Source
Chinese Hamster Ovary cell line, CHO-derived
Ala112-Arg227
Accession # P49767

N-terminal Sequence Analysis
Ala112

Structure / Form
Disulfide-linked homodimer

Predicted Molecular Mass
13 kDa

SPECIFICATIONS

SDS-PAGE
13-20 kDa, reducing conditions

Activity
The ED₅₀ for this effect is 1.5-9 ng/mL.

Endotoxin Level
<0.10 EU per 1 μg of the protein by the LAL method.

Purity
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.

Formulation
Lyophilized from a 0.2 μm filtered solution in HCl with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 250 μg/mL in 4 mM HCl.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

DATA

Bioactivity

Recombinant Human VEGF-C (Catalog # 9199-VC) induces HMVEC human microvascular endothelial cell proliferation. The ED₅₀ for this effect is 1.5-9 ng/mL. The ED₅₀ for the three competitors is >30 ng/mL, which is at least more than 10-fold weaker.
BACKGROUND

Vascular endothelial growth factor C (VEGF-C) and VEGF-D constitute a subfamily of the angiogenic VEGF angiogenic factors (1). VEGF-C is synthesized as a 58 kDa molecule that consists of a VEGF homology domain (VHD) flanked by N- and C-terminal propeptides. The proprotein undergoes covalent homodimerization and stepwise proteolytic processing to generate ligands with increasing affinity for VEGF R3/Flt-4 (2-4). Fully processed VEGF-C containing just the 21 kDa VHD can additionally bind and activate VEGF R2/KDR/Flk1 (2-4). Fully processed human VEGF-C shares 98% amino acid sequence identity with mouse and rat VEGF-C.

VEGF-C interactions with VEGF R3 are critical for lymphangiogenesis (5-8). VEGF-C and VEGF R3 are usually co-expressed at sites with lymphatic vessel sprouting, in the embryo, and in various pathological conditions. Over-expression of VEGF-C in tumor cells induces tumor lymphatic hyperplasia, resulting in enhanced lymph flow and metastasis to regional lymph nodes (9-12). It also induces physiological and intratumoral neoangiogenesis and vessel sprouting through interactions with VEGF R2 (8, 13, 14).

References: