biotechne

Recombinant Human Latent Activin A

Catalog Number: 9129-LA

RDSYSTEMS

DESCRIPTION	
Source	Chinese Hamster Ovary cell line, CHO-derived human Activin A protein Ser21-Ser426 Accession # P08476
N-terminal Sequence Analysis	Ser21 (pro) & Gly311 (mature)
Structure / Form	Noncovalently-linked complex between disulfide-linked homodimer of the mature domain and noncovalently-linked homodimer of the prodomain
Predicted Molecular Mass	32 kDa (pro) & 13 kDa (mature)

SPECIFICATIONS	
SDS-PAGE	13-16 kDa (mature) and 39 - 46 kDa (pro), reducing conditions
Activity	Measured by its ability to induce hemoglobin expression in K562 human chronic myelogenous leukemia cells. Schwall, R.H. <i>et al.</i> (1991) Method Enzymol. 198 :340. The ED ₅₀ for this effect is 0.600-3.60 ng/mL.
Endotoxin Level	<0.10 EU per 1 µg of the protein by the LAL method.
Purity	>90%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Formulation	Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details.

PREPARATION AND STORAGE	
Reconstitution	Reconstitute at 100 μg/mL in PBS.
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
	 12 months from date of receipt, -20 to -70 °C as supplied.
	 1 month, 2 to 8 °C under sterile conditions after reconstitution.

• 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Recombinant Human Latent Activin A Protein Bioactivity Recombinant Human Latent Activin A (Catalog # 9129-LA) induces hemoglobin expression in K562 human chronic myelogenous leukemia cells. The ED₅₀ is 0.600-3.60 ng/mL.

Rev. 3/1/2023 Page 1 of 2

Global bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL +1 612 379 2956 USA TEL 800 343 7475 Canada TEL 855 668 8722 China TEL +86 (21) 52380373 Europe | Middle East | Africa TEL +44 (0)1235 529449

bio-techne[®]

Recombinant Human Latent Activin A

Catalog Number: 9129-LA

RDSYSTEMS

BACKGROUND

Activin and Inhibin are members of the TGF- β superfamily of cytokines and are involved in a wide range of biological processes including tissue morphogenesis and repair, fibrosis, inflammation, neural development, hematopoiesis, reproductive system function, and carcinogenesis (1-7). Activin and Inhibin are produced as precursor proteins. Their amino terminal propeptides are proteolytically cleaved and facilitate formation of disulfide-linked dimers of the bioactive proteins (8, 9). Activins are nonglycosylated homodimers or heterodimers of various β subunits (βA , βB , βC , and βE in mammals), while Inhibins are heterodimers of a unique α subunit and one of the β subunits. Activin A is a widely expressed homodimer of two βA chains. The βA subunit can also heterodimerize with a βB or βC subunit to form Activin AB and Activin AC, respectively (10). The 14 kDa mature human βA chain shares 100% amino acid sequence identity with bovine, feline, mouse, porcine, and rat βA .

Activin A exerts its biological activities by binding to the type 2 serine/threonine kinase Activin RIIA which then noncovalently associates with the type 1 serine/threonine kinase Activin RIB/ALK-4 (7, 11). Signaling through this receptor complex leads to Smad activation and regulation of activin-responsive gene transcription (7, 11). The bioactivity of Activin A is regulated by a variety of mechanisms (11). BAMBI, Betaglycan, and Cripto are cell-associated molecules that function as decoy receptors or limit the ability of Activin A to induce receptor complex assembly (12-14). The intracellular formation of Activin A can be prevented by the incorporation of the βA subunit into Activin AC or Inhibin A (3, 10). And the bioavailability of Activin A is restricted by its incorporation into inactive complexes with α2-Macroglobulin, Follistatin, and FLRG (15, 16).

Activin A is involved in the differentiation of various cell and tissue types. The induction of definitive endoderm by Activin A is required in differentiation protocols of induced pluripotent stem cells (iPSCs) (17, 18). In vitro models of human gametogenesis use prolonged Activin A supplementation to human embryonic stem cells for differentiation into human primordial germ cell-like cells (19). Activin A can also be used to maintain cells in vitro, as is the case for iPSC-derived nephron cells that can then be used in disease modeling, drug screening and in regenerative medicine (20).

Activin A is an important factor for tumor cells to evade the immune system as Activin A can act on surrounding immune cells to decrease their antitumor activity (21). Activin A also promotes migration and growth of tumors, making it a target for cancer therapies (22). Specifically, research has shown that interfering with Activin A activity can assist in overcoming CD8 T-cell exclusion and immunotherapy resistance (23). In bone marrow-derived stem cell transplants for treatment of diabetes, Activin A enhances migration and homing of stem cells towards pancreatic lineage (24).

References:

- 1. Kumanov, P. et al. (2005) Reprod. Biomed. Online 10:786.
- 2. Maeshima, A. et al. (2008) Endocr. J. 55:1.
- 3. Rodgarkia-Dara, C. et al. (2006) Mutat. Res. 613:123.
- 4. Werner, S. and C. Alzheimer (2006) Cytokine Growth Factor Rev. 17:157.
- 5. Xu, P. and A.K. Hall (2006) Dev. Biol. 299:303.
- 6. Shav-Tal, Y. and D. Zipori (2002) Stem Cells 20:493.
- 7. Chen, Y.G. et al. (2006) Exp. Biol. Med. 231:534.
- 8. Gray, A.M. and A.J. Mason (1990) Science 247:1328.
- 9. Mason, A.J. et al. (1996) Mol. Endocrinol. 10:1055.
- 10. Thompson, T.B. et al. (2004) Mol. Cell. Endocrinol. 225:9
- 11. Harrison, C.A. et al. (2005) Trends Endocrinol. Metab. 16:73.
- 12. Onichtchouk, D. et al. (1999) Nature 401:480
- 13. Gray, P.C. et al. (2002) Mol. Cell. Endocrinol. 188:254.
- 14. Kelber, J.A. et al. (2008) J. Biol. Chem. 283:4490.
- 15. Phillips, D.J. et al. (1997) J. Endocrinol. 155:65.
- 16. Schneyer, A. et al. (2003) Endocrinology 144:1671.
- 17. Ghorbani-Dalini, S. *et al.* (2020) 3 Biotech. **10**:215.
- 18. Mennen, R. H. et al. (2022) Reprod Toxicol. 107:44.
- 19. Mishra, S. et al. (2021) Stem Cells. 39:551.
- 20. Tanigawa, S. et al. (2019) Stem Cell Reports 13:322.
- 21. Cangkrama, M. et al. (2020) Trends Mol. Med. 26:1107.
- 22. Ries, A. et al. (2020) Expert Opin. Ther. Targets. 24:985.
- 23. Pinjusic, K. et al. (2022) J. Immunother. Cancer. 10:e004533.
- 24. Dadheech, N. *et al.* (2020) Stem Cell Res. Ther. **11**:327.

Rev. 3/1/2023 Page 2 of 2

Global bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL +1 612 379 2956 USA TEL 800 343 7475 Canada TEL 855 668 8722 China TEL +86 (21) 52380373 Europe | Middle East | Africa TEL +44 (0)1235 529449