DESCRIPTION

Source E. coli-derived *F. heparinum* Heparinase I protein

Gln22-Arg384, with an N-terminal Met and 6-His tag

Accession # Q05819

N-terminal Sequence Analysis Met

Predicted Molecular Mass 42 kDa

SPECIFICATIONS

SDS-PAGE 40-42 kDa, reducing conditions

Activity Measured by its ability to liberate oligosaccharides from heparin.

The specific activity is >24,500 pmol/min/µg, as measured under the described conditions.

Endotoxin Level <1.0 EU per 1 µg of the protein by the LAL method.

Purity >95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.

Formulation Supplied as a 0.2 µm filtered solution in Tris, NaCl and DTT. See Certificate of Analysis for details.

Activity Assay Protocol

Materials

- **Assay Buffer:** 50 mM Tris, 100 mM NaCl, 2 mM CaCl₂, pH 7.5
- **Substrate:** Heparin (Tocris, Catalog # 2812), 20 mg/mL stock in deionized water
- **96-well Clear UV Plate (Costar, Catalog # 3635)
- **Plate Reader (Model: SpectraMax Plus by Molecular Devices) or equivalent**

Assay

1. Dilute rFhHeparinase I to 0.5 µg/mL in Assay Buffer.
2. Dilute Substrate to 0.75 mg/mL in Assay Buffer.
3. Load 100 µL of diluted rFhHeparinase I into a UV plate, and start the reaction by adding 200 µL of 0.75 mg/mL Substrate. Include a Substrate Blank containing 100 µL of Assay Buffer and 200 µL of 0.75 mg/mL Substrate.
4. Read plate in kinetic mode for 5 minutes at an absorbance of 232 nm.
5. Calculate specific activity:

\[
\text{Specific Activity (pmol/min/µg)} = \frac{\text{Adjusted } V_{max} \times (\text{OD/min}) \times \text{well volume (L)} \times 10^{12} \text{ pmol/mol}} {\text{ext. coeff}^* \times \text{(M}^{-1}\text{cm}^{-1}) \times \text{path corr.}^{**} \times \text{cm) x amount of enzyme (µg)}}
\]

*Adjusted for Substrate Blank
**Using the extinction coefficient 3800 M⁻¹cm⁻¹
***Using the path correction 0.92 cm

Note: the output of many spectrophotometers is in mOD

Final Assay Conditions Per Reaction:

- rFhHeparinase I: 0.05 µg
- Substrate: 0.5 mg/mL

PREPARATION AND STORAGE

Shipping The product is shipped with dry ice or equivalent. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.

- 6 months from date of receipt, -70 °C as supplied.
- 3 months, -70 °C under sterile conditions after opening.

DATA
Enzyme Activity

Recombinant F. heparinum Heparinase I Protein Enzyme Activity

Heparinase I digestion of Heparin Sulfate (200 μg) is assessed in a 5-minute kinetic assay at room temperature by monitoring absorbance at 232 nm. R&D Systems Recombinant F. heparinum Heparinase I (Catalog # 6145-GH) (orange) exhibits greater activity than the Bacteroides Heparinase I from the competition (green).

BACKGROUND

Heparin and heparan sulfate are sulfated glycosaminoglycans that share basic carbohydrate backbone structure with alternating uronic acid and N-acetylgalactosamine residues (1, 2). Heparin is found in mast cells and has strong anticoagulation properties. Heparan sulfate is found on cell membrane and extracellular matrix and is involved in various biological events from cell growth, adhesion and migration to lipid metabolism. Heparin has a much higher degree of sulfation than heparan sulfate, which can be considered as a polysaccharide with regions similar to heparin interspersed with much less sulfated regions. Both heparin and heparan sulfate can be digested by heparinases, a group of bacterial lyases that are widely used as tools for processing and analyze these polysaccharides. Heparinases degrade heparin and heparan sulfate glycosaminoglycans through an eliminative mechanism (3). Heparinase I from Flavobacterium heparinum is highly active on heparin and has no activity against chondroitin sulfate and keratan sulfate (4). The enzyme readily releases highly sulfated oligosaccharides from heparin (5).

References: