DESCRIPTION

Source
Chinese Hamster Ovary cell line, CHO-derived mouse BMP-4 protein
Ser293-Arg408
Accession # P21275

N-terminal Sequence Analysis
Ser293

Structure / Form
Disulfide-linked homodimer

Predicted Molecular Mass
13.1 kDa (monomer)

SPECIFICATIONS

SDS-PAGE
18-26 kDa, reducing conditions

Activity
The ED₅₀ for this effect is 5-40 ng/mL.

Endotoxin Level
<0.01 EU per 1 μg of the protein by the LAL method.

Purity
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.

Formulation
Lyophilized from a 0.2 μm filtered solution in Acetonitrile and TFA with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 100 μg/mL in sterile 4 mM HCl containing at least 0.1% human or bovine serum albumin.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND

BMP-4 is a TGF-β superfamily ligand that is widely expressed from early embryogenesis through adulthood. It plays an important role in mesenchyme formation, epidermal determination, suppression of neural induction, the development of multiple organs, and tissue repair (1-5). The mouse BMP-4 precursor contains a 273 amino acid (aa) propeptide and a 116 aa mature protein (6). The propeptide is cleaved intracellularly by furin or proprotein convertase 6, enabling the 15 kDa mature BMP-4 monomer to form an active disulfide linked homodimer or heterodimer with BMP-7 (7-9). Mature mouse and human BMP-4 share 98% aa sequence identity. Mouse BMP-4 shares 85% aa sequence identity with mouse BMP-2 and 35%-54% with other mouse BMPs. Compared to BMP-4 homodimers, BMP-4/BMP-7 heterodimers exhibit a greater potency in inducing osteogenic differentiation (9). In Xenopus, the heterodimers can also induce the formation of mesoderm, whereas BMP-4 homodimers only provide ventralizing signals for existing mesoderm (10). BMP-4 signals through tetrameric complexes composed of type I (primarily Activin RIIA or BMPR-IA) and type II (primarily Activin RIIA or BMPR-II) receptors (11, 12). The bioavailability of BMP-4 is regulated by its interaction with multiple proteins and glycosaminoglycans (13-15).

References: