

Recombinant Mouse VEGFR1/Flt-1 Fc Chimera

Catalog Number: 471-F1

DESCRIPTION					
Source	Mouse myeloma cell line, NS0-derived mouse VEGFR1/Flt-1 protein				
	Mouse VEGFR1 (Ser27-Glu759) Accession # P35969	IEGRMD	Human IgG ₁ (Pro100-Lys330)	6-His tag	
	N-terminus			C-terminus	
N-terminal Sequence Analysis	Ser27				
Structure / Form	Disulfide-linked homodimer				
Predicted Molecular Mass	110 kDa (monomer)				

SPECIFICATIONS			
SDS-PAGE	150-170 kDa, reducing conditions		
Activity	Measured by its ability to inhibit the VEGF-dependent proliferation of HUVEC human umbilical vein endothelial cells. Conn, G. <i>et al.</i> (1990) Proc. Natl. Acad. Sci. USA 87 :1323. The ED ₅₀ for this effect is 10-30 ng/mL.		
Endotoxin Level	<0.10 EU per 1 µg of the protein by the LAL method.		
Purity	>90%, by SDS-PAGE under reducing conditions and visualized by silver stain.		
Formulation	Lyophilized from a 0.2 um filtered solution in MOPS NaCl and CHAPS. See Certificate of Analysis for details		

PREPARATION AND STORAGE			
Reconstitution	Reconstitute at 100 µg/mL in sterile PBS.		
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.		
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles.		
	 12 months from date of receipt, -20 to -70 °C as supplied. 		
	 1 month, 2 to 8 °C under sterile conditions after reconstitution. 		
	 3 months20 to -70 °C under sterile conditions after reconstitution. 		

Rev. 6/27/2019 Page 1 of 2

Global bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL +1 612 379 2956 USA TEL 800 343 7475 Canada TEL 855 668 8722 China TEL +86 (21) 52380373 **Europe | Middle East | Africa** TEL +44 (0)1235 529449

Recombinant Mouse VEGFR1/Flt-1 Fc Chimera

Catalog Number: 471-F1

BACKGROUND

VEGFR1 (vascular endothelial growth factor receptor 1), also called Flt-1 (Fms-like tyrosine kinase), is a 180 kDa type I transmembrane glycoprotein in the class III subfamily of receptor tyrosine kinases (RTKs) (1, 2). While family members VEGFR1, VEGFR2/KDR/Flk-1 and VEGFR3/Flt-4 are all mainly expressed on endothelial cells and play central roles in vasculogenesis, angiogenesis, and lymphangiogenesis, only VEGFR1 is expressed on macrophages, and mainly plays inhibitory roles (1-3). VEGFR1 expression is also reported on osteoblasts, placental trophoblasts, renal mesangial cells, and some hematopoietic stem cells (1, 2). Like other class III RTKs, mouse VEGFR1 contains a signal peptide (aa 1-22), an extracellular domain (ECD aa 23-759) with seven Ig-like repeats, a transmembrane domain (aa 760-781) and a cytoplasmic region (aa 782-1333) with a tyrosine kinase domain and several autocatalytic phosphotyrosine sites. Mouse VEGFR1 ECD shares 91% aa sequence identity with rat and 76-79% with human, equine, canine and porcine VEGFR1. Soluble forms of the VEGFR1 ECD are produced by alternative splicing, and may also be shed during regulated intracellular proteolysis (4-10). Both soluble and transmembrane forms can inhibit angiogenesis by binding and sequestering its ligands, VEGF (VEGF-A), VEGF-B or PIGF (6-11). VEGFR1 dimerizes upon ligand binding, which can include heterodimerization with VEGFR2 that modifies VEGFR2mediated endothelial proliferation and vessel branching (8, 11, 12). VEGFR1 binds VEGF with higher affinity than does VEGFR2, but shows weaker kinase activity (9, 13). Both PIGF and VEGF induce autophosphorylation of transmembrane VEGFR1 (5, 9, 13). While deletion of mouse VEGFR1 is lethal due to overgrowth and disorganization of the vasculature, kinase-inactive mutants are viable (13, 14). VEGFR1 is up-regulated during hypoxia, and participates in neovascularization and wound healing (1, 2, 15). VEGFR1 engagement on monocyte/macrophage lineage cells enhances their migration, and release of growth factors and cytokines (1, 3, 13, 16). Lymphangiogenesis, angiogenesis, and growth-promoting effects of VEGFR1 are thought to result from enhanced migration of macrophages from the bone marrow to tumors and tissues where they recruit endothelial progenitors (3, 16). Circulating levels of VEGFR1 increase during pregnancy and are further elevated in preeclampsia (4, 6, 17).

References:

- 1. Otrock, Z.K. et al. (2007) Blood Cells Mol. Dis. 38:258.
- 2. Peters, K.G. et al. (1993) Proc. Natl. Acad. Sci. USA 90:8915.
- 3. Murakami, M. et al. (2008) Arterioscler. Thromb. Vasc. Biol. 28:658.
- 4. Al-Ani, B. et al. (2010) Hypertension 55:689.
- 5. Rahimi, N. et al. (2009) Cancer Res. 69:2607.
- 6. He, Y. et al. (1999) Molecular Endocrinology 13:537.
- 7. Cai, J. et al. (2012) EMBO Mol. Med. 4:980.
- 8. Kendall, R.L. and K.A. Thomas (1993) Proc. Natl. Acad. Sci. USA 90:10705.
- 9. Sawano, A. et al. (1996) Cell Growth Differ. 7:213.
- 10. Barleon, B. et al. (1997) J. Biol. Chem. 272:10382.
- 11. Kappas, N.C. et al. (2008) J. Cell Biol. 181:847.
- 12. Mac Gabhann, F. and A.S. Popel (2007) Biophys. Chem. 128:125.
- 13. Hiratsuka, S. et al. (1998) Proc. Natl. Acad. Sci. USA 95:9349.
- 14. Fong, G.H. et al. (1995) Nature 376:66.
- 15. Nishi, J. et al. (2008) Circ. Res. 103:261.
- 16. Muramatsu, M. et al. (2010) Cancer Res. 70:8211.
- 17. Levine, R.J. et al. (2004) N. Engl. J. Med. 350:672.

Rev. 6/27/2019 Page 2 of 2

Global bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL +1 612 379 2956 USA TEL 800 343 7475 Canada TEL 855 668 8722 China TEL +86 (21) 52380373 Europe | Middle East | Africa TEL +44 (0)1235 529449