

Recombinant Mouse PRAT4A

Catalog Number: 4429-PR

DESCRIPTION	
Source	Mouse myeloma cell line, NS0-derived Glu38-Leu276, with a C-terminal 6-His tag Accession # NP_082341
N-terminal Sequence Analysis	Glu38
Predicted Molecular Mass	26.7 kDa
SPECIFICATIONS	
SDS-PAGE	38-42 kDa, reducing conditions
Activity	Measured by its binding ability in a functional ELISA. Immobilized Recombinant Mouse PRAT4A at 2 μg/mL can bind Recombinant Human TLR4/MD-2 Complex (Catalog # 3146-TM) with an apparent K _D <20 nM.
Endotoxin Level	<0.10 EU per 1 µg of the protein by the LAL method.
Purity	>95%, by SDS-PAGE under reducing conditions and visualized by silver stain.
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS. See Certificate of Analysis for details.
PREPARATION AND ST	TORAGE
Reconstitution	Reconstitute at 300 μg/mL in PBS.
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles. • 12 months from date of receipt, -20 to -70 °C as supplied.

BACKGROUND

PRAT4A (PRotein Associated with Toll-like receptor 4A), also called CNPY3 (Canopy homolog 3) or TNRC5 (trinucleotide repeat-containing 5) is a widely expressed 40 kDa protein that is an intracellular chaperone for Toll-like receptors (TLRs) (1-3). Mouse PRAT4A cDNA encodes 276 amino acids (aa), including a putative signal sequence of 37 aa and a 239 aa mature region. A potential 151 aa form has an alternate start site at aa 126. Mouse PRAT4A shares 90%, 94%, 92%, 91% and 90% aa sequence identity with human, rat, canine, porcine and bovine PRAT4A, respectively. A related protein, PRAT4B, shares approximately 40% aa sequence identity, is co-expressed, and is reported to bind TLR4 only if it lacks mature glycosylated structures (4). PRAT4A resides in the endoplasmic reticulum (ER) and is a co-chaperone that provides substrate-specificity to the chaperone gp96, an HSP90 paralog required for proper folding of TLRs (1-3, 5, 6). It binds TLR4, enhances TLR4 N-linked glycosylation, and forms a heterotrimer with TLR4 and its co-receptor, MD2 (6-8). PRAT4A is required for transfer of TLR4 from the ER to the plasma membrane where it recognizes its extracellular ligand, bacterial lipopolysaccharide (LPS) (1-3, 6, 7). PRAT4A is also essential for maturation and trafficking of TLR9 from the ER to endolysosomes in response to its intracellular ligand, unmethylated DNA (1-3, 5-7, 9). PRAT4A deletion, knockdown, or specific mutation in mice abolishes or lowers surface expression of TLR4/MD2, TLR2, TLR1 and RP105/CD180, and abolishes production of RANTES in response to a TLR7 ligand (3, 6-8). PRAT4A enhances Th1 responses and production of inflammatory cytokines in response to TLR ligands, and thus contributes to endotoxic shock (2, 6-8).

1 month, 2 to 8 °C under sterile conditions after reconstitution. 3 months, -20 to -70 °C under sterile conditions after reconstitution.

References:

- 1. McGettrick, A.F. and L.A.J. O'Neill (2010) Curr. Opin. Immunol. 22:20.
- 2. Akashi-Takamura, S. and K. Miyake (2008) Curr. Opin. Immunol. 20:420.
- 3. Wakabayashi, Y. *et al.* (2006) J. Immunol. **177**:1772.
- Konno, K. et al. (2006) Biochem. Biophys. Res. Commun. 339:1076.
- 5. Liu, B. et al. (2010) Nat. Commun. 1:79.
- 6. Takahashi, K. *et al.* (2007) J. Exp. Med. **204**:2963.
- 7. Kiyokawa, T. et al. (2008) Int. Immunol. 20:1407.
- 8. Shibata, T. et al. (2011) Int. Immunol. 23:503.
- 9. Saitoh, S-I. and K. Miyake (2009) Immunol. Rev. 227:32.

