Catalog Number: 3358-TC

DESCRIPTION

| DESCRIPTION                     |                                           |
|---------------------------------|-------------------------------------------|
| Source                          | Mouse myeloma cell line, NS0-derived      |
|                                 | Gly23-Pro625, with a C-terminal 6-His tag |
|                                 | Accession # NP_002151                     |
| N-terminal Sequence<br>Analysis | Gly23                                     |
| Predicted Molecular<br>Mass     | 65.3 kDa                                  |

| SPECIFICATIONS  |                                                                                                                                                                                                                                                                                                                                          |
|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SDS-PAGE        | 97 kDa, reducing conditions                                                                                                                                                                                                                                                                                                              |
| Activity        | Measured by the ability of the immobilized protein to block Fibronectin-mediated adhesion of NIH-3T3 mouse embryonic fibroblast cells.<br>rhTenascin-C immobilized at 15 μg/mL, in the presence of 0.1 μg/mL human Fibronectin, will block approximately 70%-90% NIH3/T3 cell<br>adhesion (5 x 10 <sup>4</sup> cells/well, 100 μL/well). |
| Endotoxin Level | <0.10 EU per 1 µg of the protein by the LAL method.                                                                                                                                                                                                                                                                                      |
| Purity          | >95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.                                                                                                                                                                                                                             |
| Formulation     | Lyophilized from a 0.2 µm filtered solution in PBS. See Certificate of Analysis for details.                                                                                                                                                                                                                                             |

| PREPARATION AND STORAGE |                                                                                                                         |  |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------|--|
| Reconstitution          | Reconstitute at 500 µg/mL in sterile PBS.                                                                               |  |
| Shipping                | The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. |  |
| Stability & Storage     | Use a manual defrost freezer and avoid repeated freeze-thaw cycles.                                                     |  |
|                         | <ul> <li>12 months from date of receipt, -20 to -70 °C as supplied.</li> </ul>                                          |  |
|                         | <ul> <li>1 month, 2 to 8 °C under sterile conditions after reconstitution.</li> </ul>                                   |  |
|                         | <ul> <li>3 months, -20 to -70 °C under sterile conditions after reconstitution.</li> </ul>                              |  |

## BACKGROUND

Tenascin C, also known as hexabrachion, cytotactin, neuronectin, GMEM, JI, myotendinous antigen, glioma-associated-extracellular matrix antigen, and GP 150-225, is a member of the Tenascin family of extracellular matrix proteins. It is secreted as a disulfide-linked homohexamer whose subunits can vary in size from approximately 200 kDa to over 300 kDa due to differences in glycosylation (1). Rotary-shadowed electron micrographs of the purified molecule show six strands joined to one another at one end in a globular domain with each arm terminating in a knob-like structure (2-3). The human Tenascin C monomer is synthesized as a precursor with a 22 amino acid (aa) signal sequence and a 2179 aa mature chain (SwissProt # P24821). The mature chain consists of a coiled-coil region (aa 118-145), followed by 15 EGF-like domains, 15 fibronectin type-III domains, and a fibrinogen C-terminal domain. In addition, there are 23 potential sites of N-linked glycosylation. Alternative splicing within the fibronectin type-III repeats produces six isoforms for human Tenascin C. Mature human Tenascin C (isoform 1) shares 84% aa sequence identity with mature mouse Tenascin C. In the developing embryo, Tenascin C is expressed during neural, skeletal, and vascular morphogenesis (1, 2). In the adult, it virtually disappears with continued basal expression detectable only in tendon-associated tissues (1, 2). However, greatup-regulation in expression occurs in tissues undergoing remodeling processes seen during wound repair and neovascularization or in pathological states such as inflammation or tumorigenesis (1, 4-5). Biologically, Tenascin C functions as an adhesion-modulatory extracellular matrix protein (1, 4-8). Specifically, it antagonizes the adhesive effects of fibronectin, and impacts the ability of fibroblasts to deposit and contract the matrix by affecting the morphology and signaling pathways of adherent cells (5-7). Tenascin C thus promotes epidermal cell migration and proliferation during wound repair.

## References:

- 1. Hsia, H.C. and J.E. Schwarzbauer (2005) J. Biol. Chem. 280:26641.
- 2. Nies, D.E. et al. (1991) J. Biol. Chem. 266:2818.
- 3. Erickson, H.P and J.L. Iglesias (1984) Nature 311:267.
- 4. Orend, G. et al. (2003) Oncogene 22:3917.
- 5. Wenk, M.B. et al. (2000) J. Cell Biol. 150:913
- 6. Midwood, K.S. et al. (2004) Mol. Biol. Cell 15:5670.
- 7. Midwood, K.S. and J. E. Schwarzbauer (2002) Mol. Biol. Cell 13:3601.
- 8. Hsia, H.C. and J.E. Schwarzbauer (2006) J. Surg. Res. **136**:92.

Rev. 2/6/2018 Page 1 of 1



Global bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL +1 612 379 2956 USA TEL 800 343 7475 Canada TEL 855 668 8722 China TEL +86 (21) 52380373 Europe | Middle East | Africa TEL +44 (0)1235 529449