Recombinant Human VEGF
Catalog Number: 3045-VE

DESCRIPTION

Source: Spodoptera frugiperda, Sf 21 (stably transfected)-derived
Aza27-Aasp191
Accession # AAL27435

N-terminal Sequence Analysis: Aza27

Structure / Form: Disulfide-linked homodimer

Predicted Molecular Mass: 19.1 kDa (monomer)

SPECIFICATIONS

SDS-PAGE: 20-21 kDa, reducing conditions

Activity: Measured by its binding ability in a functional ELISA.
Serially diluted Recombinant Human (rh) VEGF165b is added to a Recombinant Human VEGF R2/KDR/Flik-1 Fc Chimera (Catalog # 357-KD) coated plate (2 μg/mL, 100 μL/well). Bound rhVEGF165b is detected by a human VEGF 165b specific antibody (Catalog # MAB3045). The concentration of rhVEGF165b that produces half-maximum response is approximately 0.12-0.6 nM.

Endotoxin Level: <0.10 EU per 1 μg of the protein by the LAL method.

Purity: >95%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Formulation: Lyophilized from a 0.2 mL filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution: Reconstitute at 100 μg/mL in PBS containing at least 0.1% human or bovine serum albumin.

Shipping: The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND

Vascular endothelial growth factor (VEGF or VEGF-A), also known as vascular permeability factor (VPF), is a potent mediator of both angiogenesis and vasculogenesis in the fetus and adult (1-3). It is a member of the PDGF family that is characterized by the presence of eight conserved cysteine residues and a cystine knot structure (4). Humans express two sets of alternately spliced isoforms of 121, 145, 165, 183, 189, and 206 amino acids (aa) in length (4). VEGF165 appears to be the most abundant and potent of the angiogenic isoform set, followed by VEGF121, and VEGF183 (3, 4). The anti-angiogenic or "b" set of isoforms is differentially spliced to contain six alternate amino acids at the C-terminus, and are the more highly expressed isoforms in normal adult tissue (5). VEGF165b, like VEGF121, but unlike most angiogenic isoforms, does not bind heparins and is therefore diffusible (4, 6). Human VEGF165b shares 88% aa sequence identity with corresponding regions of mouse and rat, 96% with porcine, 95% with canine, and 93% with equine and bovine VEGF165, respectively. VEGFs bind the type I transmembrane receptor tyrosine kinases VEGF R1 (also called Flt-1) and VEGF R2 (Flk-1/KDR) on endothelial cells (4). Although VEGF affinity is highest for binding to VEGF R1, VEGF R2 appears to be the primary mediator of VEGF angiogenic activity (3, 4). The affinity of VEGF165b for VEGF R2 is similar to that of VEGF165, but VEGF165b only partially activates VEGF R2 such that the kinase regulatory site Y1054 is not phosphorylated (6). VEGF165b, also does not bind neuropilin-1, suggesting that the functional difference between VEGF165 and VEGF165b may be due to either the lack of neuropilin-1 co-signaling or unique downstream signaling activated by VEGF165b (8). Since VEGF165 may compete with angiogenic VEGFs for VEGF R2 sites, its ectopic expression in tumors has been shown to inhibit their growth (7).

References: