DESCRIPTION

Source
Mouse myeloma cell line, NS0-derived
Met1-Gln774, with a C-terminal 10-His tag
Accession # AAH00594

N-terminal Sequence Analysis
Low recovery, Gln26 predicted

Structure / Form
Monomer

Predicted Molecular Mass
85 kDa

SPECIFICATIONS

SDS-PAGE	100-110 kDa, reducing conditions
Activity	Measured by its ability to produce hydrogen peroxide during the oxidation of benzylamine. The specific activity is >2 pmol/min/μg, as measured under the described conditions.
Endotoxin Level	<1.0 EU per 1 μg of the protein by the LAL method.
Purity	>90%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.
Formulation	Supplied as a 0.2 μm filtered solution in MES and NaCl. See Certificate of Analysis for details.

Activity Assay Protocol

Materials

- Assay Buffer: 50 mM Sodium Borate, 1.2 M Urea, 10 mM CaCl₂, pH 8.0
- Recombinant Human Lysyl Oxidase Homolog 2/LOXL2 (rhLOXL2) (Catalog # 2639-AO)
- Coupling Enzyme: Horseradish Peroxidase (HRP) (250-330 U/mg) (Sigma, Catalog # P8375), 250 units/mL stock in 0.1 M Sodium Phosphate, pH 8.0
- Substrate Component 1: Benzylamine (Sigma, Catalog # B5136), 100 mM stock in deionized water
- Substrate Component 2: Amplex Ultra Red (AUR) (Molecular Probes, Catalog # A36006), 10 mM stock in DMSO
- F16 Black Maxisorp Plate (Nunc, Catalog # 475515)
- Fluorescent Plate Reader (Model: SpectraMax Gemini EM by Molecular Devices) or equivalent

Assay

1. Dilute rhLOXL2 to 10 ng/μL in Assay Buffer.
2. Dilute Benzylamine to 4 mM in Assay Buffer.
3. Combine equal volumes of 10 ng/μL rhLOXL2 and 4 mM Benzylamine. Also create a Substrate Blank by combining equal volumes of Assay Buffer and 4 mM Benzylamine.
4. Incubate the reactions for 30 minutes at 37 °C.
5. Prepare the Substrate Mixture, 2 units/mL HRP and 40 μM AUR, in Assay Buffer.
6. Load 50 μL of the incubated reactions into the wells of a plate and add 50 μL of Substrate Mixture.
7. Read at excitation and emission wavelengths of 544 nm and 590 nm (top read), respectively in endpoint mode. Note: A cutoff must be set manually at a wavelength of 570 nm.
8. Calculate specific activity:

 \[
 \text{Specific Activity (pmol/min/μg)} = \frac{\text{Adjusted Fluorescence} \times \text{Conversion Factor}^\ast}{\text{Incubation time (min) x amount of enzyme (μg)}}
 \]

 *Adjusted for Substrate Blank

 **Derived using a fluorescent standard prepared by incubating 20 μM AUR, 1 unit/mL HRP, 1 mM Benzylamine, and a curve of Hydrogen Peroxide (Sigma, Catalog # H1009) in Assay Buffer. Use this oxidized AUR curve to determine the conversion factor.

Final Assay Conditions

Per Well:

- rhLOXL2: 0.25 μg
- Benzylamine: 1 mM
- HRP: 1 unit/mL
- AUR: 20 μM

PREPARATION AND STORAGE

Shipping

The product is shipped with dry ice or equivalent. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage

Use a manual defrost freezer and avoid repeated freeze-thaw cycles.

- 6 months from date of receipt, -70 °C as supplied.
- 3 months, -70 °C under sterile conditions after opening.

DATA
1 μg/lane of Recombinant Human Lysyl Oxidase Homolog 2 (Catalog # 2639-AO) and 1 μg/lane of competitor Lysyl Oxidase Homolog 2 were resolved with 4-20% SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by silver staining.

BACKGROUND

Lysyl Oxidase Homolog 2 (lysyl oxidase-like protein 2, LOXL2) is a member of lysyl oxidase-like (LOXL) gene family which includes LOXL1 through LOXL4. These enzymes are secreted copper-binding amine oxidases that oxidize primary amine substrates to aldehydes (1). The N-terminal region of LOXL2 contains four scavenger receptor cysteine-rich (SRCR) domains, and the C-terminal region is a catalytic domain similar to other lysyl oxidases (1). The catalytic domain contains conserved residues required for copper binding and formation of a lysyl tyrosylquinone co-factor (2). Although some of the LOXL enzymes are known to cross-link collagen and elastin substrates, such a function has yet to be characterized for LOXL2. It has been shown that LOXL2 promotes cell migration and tumor cell invasiveness (3, 4). Elevated expression of LOXL2 is also associated with cancer progression in various tumors and carcinoma cell lines, which makes it a potential marker for prognosis of cancer (5). LOXL2 is expressed in many tissues, with elevated levels in reproductive tissues such as placenta, uterus, and prostate (6).

References: