DESCRIPTION

Source
Spodoptera frugiperda, Sf 21 (baculovirus)-derived
Aa301-Ser412 (Tyr340Phe)
Accession # P10600

N-terminal Sequence Analysis
Ala301

Structure / Form
Disulfide-linked homodimer

Predicted Molecular Mass
12.7 kDa (monomer)

SPECIFICATIONS

SDS-PAGE
12 kDa, reducing conditions
24 kDa, non-reducing conditions

Activity
Measured by its ability to inhibit the IL-4-dependent proliferation of HT-2 mouse T cells. Tsang, M. et al. (1995) Cytokine 7:389.
The ED₅₀ for this effect is 0.01-0.04 ng/mL.
The specific activity of recombinant human TGF-β3 is approximately 2.2 x 10⁴ IU/μg, which is calibrated against recombinant human TGF-β3 WHO International Standard (NIBSC code: 09/234).

Endotoxin Level
<0.01 EU per 1 μg of the protein by the LAL method.

Purity
>97%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Formulation
Lyophilized from a 0.2 μm filtered solution in Acetonitrile and TFA with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 20 μg/mL in sterile 4 mM HCl containing 1 mg/mL human or bovine serum albumin.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

DATA

Bioactivity
Recombinant Human TGF-β3 (Catalog # 243-B3) inhibits Recombinant Mouse IL-4 (Catalog # 404-ML) induced proliferation in the HT-2 mouse T cell line. The ED₅₀ for this effect is 0.01-0.04 ng/mL.

SDS-PAGE
1 μg lane of Recombinant Human TGF-β3 was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by silver staining, showing single bands at 12 kDa and 24 kDa, respectively.
TGFβ3 (transforming growth factor-beta 3) is a member of a TGF-β superfamily subgroup that is defined by their structural and functional similarities (1-5). TGF-β3 and its closely related proteins, TGF-β1 and -β2, act as cellular switches to regulate immune function, cell proliferation, and epithelial-mesenchymal transition (4, 6, 7). The non-redundant biological effects of TGF-β3 include involvement in palatogenesis, chondrogenesis, and pulmonary development (1, 2, 7-9). Human TGF-β3 cDNA encodes a 412 amino acid (aa) precursor that contains a 20 aa signal peptide and a 392 aa proprotein. The proprotein is processed by a furin-like convertase to generate a 220 aa latency-associated peptide (LAP) and a 112 aa mature TGF-β3, respectively. Mature human TGF-β3 shows 100%, 99%, and 98% aa identity with mouse/dog/horse, rat, and pig TGF-β3, respectively. TGF-β3 is secreted as a complex with LAP. This latent form of TGF-β3 becomes active upon cleavage by plasmin, matrix metalloproteases, thrombospondin-1, and a subset of integrins (12). TGF-β3 binds with high affinity to TGF-βRII, a type II serine/threonine kinase receptor. This receptor then phosphorylates and activates type I serine/threonine kinase receptors, TGF-βRI or ALK-1, to modulate transcription through Smad phosphorylation (13-15). The divergent biological effects exerted by individual TGF-β isoforms is dependent upon the recruitment of co-receptors (TGF-βRIII and endoglin) and the subsequent initiation of Smad-dependent or -independent signaling pathways (14, 16, 17).

References: