Recombinant Human Chemerin
Catalog Number: 2324-CM

DESCRIPTION

Source: E. coli-derived
Glu21-Ser157, with an N-terminal Met
Accession # Q99969

N-terminal Sequence Analysis: Met
Predicted Molecular Mass: 16 kDa

SPECIFICATIONS

Activity: Measured by its ability to chemoattract BaF3 mouse pro-B cells transfected with human ChemR23.
The ED50 for this effect is 4-20 ng/mL.

Endotoxin Level: <0.10 EU per 1 μg of the protein by the LAL method.

Purity: >97%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Formulation: Lyophilized from a 0.2 μm filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution: Reconstitute at 100 μg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.

Shipping: The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage: Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND

Human Chemerin, also known as Tazarotene-induced Gene 2, (TIG2) is a new, but distant member of the Cystatin superfamily (1-3). Members of this superfamily contain at least two intrachain disulfide bonds and an α-helical structure over a distance of about 100 amino acids (2, 3). Chemerin is synthesized as a 163 aa precursor that contains a hydrophobic 20 aa N-terminal sequence, an intervening 137 aa Cystatin-fold containing domain, and a six aa C-terminal prosegment (1, 4). Within the cystatin-fold domain there are three intrachain disulfide bonds that contribute to the fold, and three potential sites for phosphorylation and one for myristoylation (5). The precursor molecule undergoes proteolytic processing at both termini by unknown proteases. The N-terminal residue 20 aa hydrophobic segment is described as being either a signal sequence or a transmembrane (TM) segment for a type II TM protein (1, 6). In either case, it gives rise to a soluble proform that undergoes further processing at the C-terminus. In human, the C-terminal six residues are cleaved, giving rise to a monomeric, 16 kDa heparin-binding bioactive molecule (aa 21 - 157) (7). A shorter 134 aa form has been described (5). Bioactivity seems to be concentrated in the nine residues preceding the prosegment (aa 149 - 157). Retention of the prosegment blocks activity (4). The 137 aa mature segment is known to bind to the G-protein coupled receptor termed ChemR23 (5, 7).

Binding results in macrophage and immature dendritic cell chemotaxis (7). The distribution of this receptor is limited to immune APCs, and it is assumed that Chemerin is an inflammatory molecule. It is unclear which cells are actually producing Chemerin, but keratinocytes, endothelial cells and osteoclasts are potential candidates (1, 7). Mature human Chemerin shares 67% aa sequence identity with mouse Chemerin (7). There is apparently cross-species activity for the protein (8).

References:

PRODUCT SPECIFIC NOTICES

This product and/or its use is the subject of European Patent 1 405 083 B1, US Patents 7,332,291; 7,419,658 and 7,842,453 as well as foreign equivalents licensed to R&D Systems Inc. The purchase of this product is intended for research purposes only, not including the screening of compounds for the development of therapeutic and/or diagnostic products. Buyers may require a separate license to the patent rights for applications beyond such research purposes.

For information on licensing please contact Euroscrean SA rue Adrienne Bolland n°47 B-6041 Gosselies Belgium. Phone: +32-71-348500, Fax: +32-71-348519, e-mail LicensingBD@euroscreen.com. Attention: Dr. Vincent Lannoy.