Recombinant Bovine IFN-γ
Catalog Number: 2300-BG

DESCRIPTION

Source
E. coli-derived
Gln24-Thr166 & Gln24-Arg162, both with an N-terminal Met
Accession # NP_776511

N-terminal Sequence Analysis
Met

Predicted Molecular Mass
17 kDa

SPECIFICATIONS

Activity
The ED_{50} for this effect is 1.5-7.5 ng/mL.

Endotoxin Level
<0.10 EU per 1 µg of the protein by the LAL method.

Purity
>95%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Formulation
Lyophilized from a 0.2 µm filtered solution in Acetonitrile and TFA with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 25 µg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.

- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND

Interferon-gamma (IFN-γ), also known as type II or immune interferon, exerts a wide range of immunoregulatory activities and is considered to be the prototype proinflammatory cytokine (1, 2). Mature bovine IFN-γ exists as a noncovalently linked homodimer of 20 - 25 kDa variably glycosylated subunits (3). It shares 78% - 80% amino acid (aa) sequence identity with canine, feline, equine, and porcine IFN-γ and 42% - 59% with cotton rat, human, mouse, rat, and rhesus IFN-γ. IFN-γ dimers bind to IFN-γ RII (alpha subunits) which then interact with IFN-γ RII (beta subunits) to form the functional receptor complex of two α and two β subunits. Inclusion of IFN-γ RII increases the binding affinity for ligand and the efficiency of signal transduction (4, 5). IFN-γ is produced by a variety of immune cells under inflammatory conditions, notably by T cells and NK cells (6). It plays a key role in host defense by promoting the development and activation of Th1 cells, chemotraction and activation of monocytes and macrophages, upregulation of antigen presentation molecules, and immunoglobulin class switching in B cells. It also exhibits antiviral, antiproliferative, and apoptotic effects (6, 7). In addition, IFN-γ functions as an anti-inflammatory mediator by promoting the development of regulatory T cells and inhibiting Th17 cell differentiation (6, 9). The pleiotropic effects of IFN-γ contribute to the development of multiple aspects of atherosclerosis (7).

References: