DESCRIPTION

Source
E. coli derived
Ala20-Phe152, with and without an N-terminal Met
Accession # AAC08706

N-terminal Sequence Analysis
Ala20 and Met

SPECIFICATIONS

Activity
Measured in a cell proliferation assay using TF-1 human erythroleukemic cells. Kitamura, T. et al. (1989) J. Cell Physiol. 140:323. The ED_{50} for this effect is 0.02-0.1 ng/mL.
The specific activity of Recombinant Human IL-3 is approximately 1.8 x 10^{3} IU/μg, which is calibrated against recombinant human IL-3 WHO International Standard (NIBSC code: 91/510).

Endotoxin Level
<0.10 EU per 1 μg of the protein by the LAL method.

Purity
>97%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Formulation
Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 100 μg/mL in sterile PBS.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

DATA

Bioactivity
Recombinant Human IL-3 (Catalog # 203-IL/CF) stimulates cell proliferation of the TF-1 human erythroleukemic cell line. The ED_{50} for this effect is 0.02-0.1 ng/mL.

SDS-PAGE
1 μg lane of Recombinant Human IL-3 was resolved with SDS-PAGE under reducing (R) conditions and visualized by silver staining, showing a single band at 14 kDa.

BACKGROUND

Interleukin 3 is a pleiotropic factor produced primarily by activated T cells that can stimulate the proliferation and differentiation of pluripotent hematopoietic stem cells as well as various lineage committed progenitors. In addition, IL-3 also affects the functional activity of mature mast cells, basophils, eosinophils and macrophages. Because of its multiple functions and targets, it was originally studied under different names, including mast cell growth factor, P-cell stimulating factor, burst promoting activity, multi-colony stimulating factor, thy-1 inducing factor and WEHI-3 growth factor. In addition to activated T cells, other cell types such as human thymic epithelial cells, activated murine mast cells, murine keratinocytes and neurons/astrocytes can also produce IL-3. At the amino acid sequence level, mature human and murine IL-3 share only 29% sequence identity. Consistent with this lack of homology, IL-3 activity is highly species-specific and human IL-3 does not show activity on murine cells.

IL-3 exerts its biological activities through binding to specific cell surface receptors. The high affinity receptor responsible for IL-3 signaling is composed of at least two subunits, an IL-3 specific α chain which binds IL-3 with low affinity and a common β chain that is shared by the IL-5 and GM-CSF high-affinity receptors. Although the β chain itself does not bind IL-3, it confers high-affinity IL-3 binding in the presence of the α chain. Receptors for IL-3 are present on bone marrow progenitors, macrophages, mast cells, eosinophils, megakaryocytes, basophils and various myeloid leukemic cells.