

DESCRIPTION

Source Human embryonic kidney cell, HEK293-derived human Apolipoprotein E4/ApoE4 protein
 Lys19-His318
 Accession # AAB59397.1

N-terminal Sequence Analysis Lys 19

Predicted Molecular Mass 34 kDa

SPECIFICATIONS

SDS-PAGE 32-39 kDa, under reducing conditions.

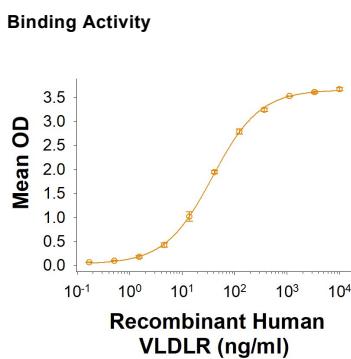
Activity Measured by its binding ability in a functional ELISA.
 Recombinant Human Apolipoprotein E4/ApoE4 binds to Recombinant Human VLDLR Protein (Catalog # 8444-VL) with an ED₅₀ of 10.0-100 ng/mL.

Endotoxin Level <0.10 EU per 1 µg of the protein by the LAL method.

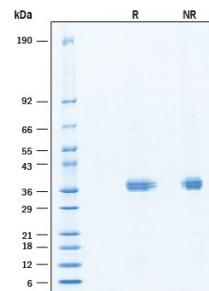
Purity >95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.

Formulation Lyophilized from a 0.2 µm filtered solution in MOPS, NaCl and TCEP with Trehalose. See Certificate of Analysis for details.

PREPARATION AND STORAGE


Reconstitution Reconstitute at 250 µg/mL in water.

Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.


Stability & Storage Use a manual defrost freezer and avoid repeated freeze-thaw cycles.

- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

DATA

SDS-PAGE

Recombinant Human Apolipoprotein E4/ApoE4 Protein SDS-PAGE. 2 µg/lane of Recombinant Human Apolipoprotein E4/ApoE4 Protein (Catalog # 11736-AE) was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue staining, showing bands at 32-39 kDa, under reducing conditions.

BACKGROUND

Apolipoprotein E (ApoE) is a polymorphic lipid-transport protein with three major human isoforms-ApoE2, ApoE3, and ApoE4-differing by single amino acid substitutions at residues 112 and 158, which significantly alter their structure and function [1, 2]. All isoforms share a two-domain structure: the N-terminal domain mediates receptor binding, while the C-terminal domain facilitates lipid binding and oligomerization [2]. ApoE3 (Cys112/Arg158) is the most common and functionally neutral isoform, while ApoE2 (Cys112/Cys158) has reduced affinity for LDL receptors, often leading to type III hyperlipoproteinemia in homozygotes [1, 4]. ApoE4 (Arg112/Arg158) exhibits a more compact and less stable structure due to domain interaction, predisposing it to pathological effects in the brain [2, 5]. Functionally, ApoE isoforms differentially regulate neuronal metabolism: ApoE2 enhances glycolytic activity and hexokinase expression, promoting neuroprotection, whereas ApoE4 impairs these pathways, increasing vulnerability to aging and Alzheimer's disease (AD) [1]. Recent transcriptomic and epigenomic profiling of human microglia in an AD xenotransplantation model revealed that ApoE isoforms distinctly shape gene expression and chromatin accessibility. ApoE4 drives pro-inflammatory and neurodegenerative signatures, while ApoE2 supports homeostatic microglial states [3]. Clinically, ApoE genotyping is widely used to assess AD risk, with ApoE4 being the strongest genetic risk factor and ApoE2 offering relative protection [4, 5]. Therapeutic strategies targeting ApoE include isoform-specific modulation and gene editing. Additionally, ApoE isoforms are valuable tools in translational research for drug screening, biomarker discovery, and personalized medicine [4].

References:

1. Zhang X, *et al.* (2023) Cells **12**:410.
2. Horn JVC, *et al.* (2023) Mol Cell Biochem **478**: 173.
3. Murphy KB, *et al.* (2025) Nat Commun **16**:4883.
4. Mahley RW, *et al.* (2012) J Lipid Res **53**:539.
5. Liu CC, *et al.* (2013) Nat Rev Neurol **9**:106.