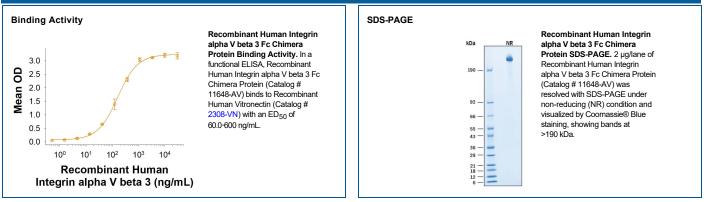
biotechne

Recombinant Human Integrin alpha V beta 3 Fc Chimera


RDSYSTEMS

DESCRIPTION				
Source	Human embryonic kidney cell, HEK293-derived human Integrin alpha V beta 3 protein			
	Human ITGAV (Phe31-Val992) Accession # AAA36808.1	IEGR	Human IgG ₁ (Glu99-Lys330) (with modifications)	
	Human ITGB3 (Gly27-Asp718) Accession # P05106.2	HPIEGR	Human IgG ₁ (Glu99-Lys330) (with modifications)	
	N-terminus	C-terminus		
N-terminal Sequence Analysis	Phe 31 (Integrin alpha V) & Gly 27 (Integrin Beta 3)			
Structure / Form	Disulfide linked heterodimer			
Predicted Molecular Mass	133 kDa (Integrin alpha V) & 103 kDa (Integrin beta 3)			

SPECIFICATIONS		
SDS-PAGE	>190 kDa, under non-reducing conditions.	
Activity	Measured by its binding ability in a functional ELISA. Recombinant Human Integrin alpha V beta 3 Fc Chimera (Catalog # 11648-AV) binds to Recombinant Human Vitronectin (Catalog # 2308- VN) with an ED ₅₀ of 60.0-600 ng/mL.	
Endotoxin Level	<0.10 EU per 1 µg of the protein by the LAL method.	
Purity	>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.	
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.	

PREPARATION AND STORAGE			
Reconstitution	Reconstitute at 250 μg/mL in water.		
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.		
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles.		
	 12 months from date of receipt, -20 to -70 °C as supplied. 		
	 1 month, 2 to 8 °C under sterile conditions after reconstitution. 		
	• 3 months -20 to -70 °C under sterile conditions after reconstitution		

DATA

Rev. 2/11/2025 Page 1 of 2

Bio-Techne® Global | bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL: 1.612.379.2956 USA | TEL: 800.343.7475 Canada | TEL: 855.668.8722 Europe | Middle East | Africa TEL: +44.0.1235.529449 China | info.cn@bio-techne.com TEL: 400.821.3475

bio-techne® RDSYSTEMS

Recombinant Human Integrin alpha V beta 3 Fc Chimera

Catalog Number: 11648-AV

BACKGROUND

Integrin $\alpha V\beta3$ together with $\alpha IIb\beta_3$, constitutes the only known $\beta3$ Integrins (1-3). The non-covalent heterodimer of 170 kDa $\alpha V/CD51$ and 93 kDa $\beta_3/CD61$ subunits shows wide expression, notably by endothelial cells and osteoclasts (2-4). Each subunit has a transmembrane sequence and a short cytoplasmic tail connected to the cytoskeleton. Active cell surface $\alpha V\beta3$ adheres to matrix proteins including vitronectin, fibrinogen and thrombospondin (2, 3). The ligand binding site of $\alpha V\beta3$ is in the N-terminal head region, formed by interaction of the $\beta3$ vWFA domain with the αV beta-propeller structure (4). The αV subunit contributes a thigh and a calf region, while the $\beta3$ subunit contains a PSI domain and four cysteine-rich I-EGF folds. The αV subunit domains termed thigh, calf-1 and calf-2 generate a "knee" region that is bent when the $\alpha V\beta3$ is in its constitutively inactive state. Activation, either by "inside out" signaling or by Mg²⁺ or Mn²⁺ binding, extends the Integrin to expose its ligand binding site (1, 4). The 962 aa human αV ECD(11) shares 92-95% aa sequence identity with mouse, rat and bovine αV while the 685 aa human β_3 ECD(12) shares 95% aa identity with equine and canine, and 89-92% aa identity with mouse, rat and porcine β_3 . Two splice variants of $\beta3$ (b and c) diverge over the last 21 amino acids (aa) and lack cytoplasmic phosphorylation sites (5, 6). Another $\beta3$ splice variant diverges after the vWFA domain, producing a soluble 60 kDa form in platelets and endothelial cells (7). $\alpha V\beta3$ is essential for the maturation of osteoclasts and their binding and resorption of bone; it also, however, promotes their apoptosis (8, 9). M-CSF R and $\alpha V\beta3$ share signaling pathways during osteoclastogenesis, and deletion of either molecule causes osteopetrosis (8, 9). $\alpha V\beta3$ is involved in several other signaling pathways by direct interaction with receptor tyrosine kinases and ligands. For example, it cooperates with endothelial cell VEGF R2 in angiogenesis, and w

References:

- 1. Hynes, R. O. (2002) Cell 110:673.
- 2. Serini, G. et al. (2006) Exp. Cell Res. 312:651.
- 3. Ross, F. P. and S. L. Teitelbaum (2005) Immunol. Rev. 208:88.
- 4. Xiong, J. et al. (2001) Science 294:339.
- 5. Kumar, C. S. *et al.* (1987) J. Biol. Chem. **272**:16390.
- 6. vanKuppevelt, H. et al. (1989) Proc. Natl. Acad. Sci. USA 86:5415.
- 7. Djaffar, I. et al. (1994) Biochem. J. 300:69.
- 8. McHugh, K. P. et al. (2000) J. Clin. Invest. 105:433.
- 9. Faccio, R. *et al.* (2003) J. Clin. Invest. **111**:749.
- Chu, J. J. and M. Ng (2004) J. Biol. Chem. **279**:54533.
- 11. Suzuki, S. *et al.* (1987) J. Biol. Chem. **262**:14060.
- 12. Fitzgerald, L. A. *et al.* (1987) J. Biol. Chem. **262**:3936
- 13. Somanath, P.R. *et al.* (2009) Angiogenesis **12**:177.
- 14. Saegusa, J. et al. (2009) J. Biol. Chem. 284:24106.