

DESCRIPTION				
Source	Human embryonic kidney cell, HEK293-derived human Integrin alpha 4 beta 7/LPAM-1 protein			
	Human ITGA4 (Tyr34-Gln970,R591L & R878Q) Accession # P13612.3	IEGR	Human IgG ₁ (Glu99-Lys330) (with modifications)	
	Human ITGB7 (Glu20-His723) Accession # P26010.1	IEGR	Human IgG ₁ (Glu99-Lys330) (with modifications)	
	N-terminus		C-terminus	
N-terminal Sequence Analysis	Tyr34 (Integrin alpha 4) & Glu20 (Integrin beta 7)			
Structure / Form	Disulfide-linked heterodimer			
Predicted Molecular Mass	130 kDa (Integrin alpha 4) & 104 kDa (Integrin beta 7	´)		

SPECIFICATIONS		
SDS-PAGE	115-135 kDa (Integrin beta 7) & 140-160 kDa (Integrin alpha 4), under reducing conditions.	
Activity	Measured by its binding ability in a functional ELISA. Recombinant Human Integrin α4β7/LPAM-1 Fc Chimera (Catalog # 11509-A3) binds Recombinant Human MAdCAM-1 Fc Chimera (Catalog # 6056-MC) with an ED ₅₀ of 30.0-450 ng/mL.	
Endotoxin Level	<0.10 EU per 1 μ g of the protein by the LAL method.	
Purity	>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.	
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.	

PREPARATION AND STORAGE			
Reconstitution	Reconstitute at 500 μg/mL in PBS.		
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.		
Stability & Storage	 Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution. 		
	 3 months, -20 to -70 °C under sterile conditions after reconstitution. 		

Rev. 5/1/2024 Page 1 of 2

Bio-Techne® Global | bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL: 1.612.379.2956 USA | TEL: 800.343.7475 Canada | TEL: 855.668.8722 Europe | Middle East | Africa TEL: +44.0.1235.529449 China | info.cn@bio-techne.com TEL: 400.821.3475

bio-techne® RDSYSTEMS

BACKGROUND

Integrin $\alpha 4\beta7$ is an integrin family adhesion receptor that shares subunits with $\alpha 4\beta1$ (VLA4) and the E-Cadherin receptor, $\alpha E\beta7$ (1). It is a non-covalent heterodimer composed of two type I transmembrane glycoprotein subunits, a 150 kDa $\alpha4$ (CD49d) subunit and a 130 kDa $\beta7$ subunit (2, 3). The $\alpha4$ extracellular domain (ECD) contains an N-terminal β -propeller structure followed by thigh, calf-1, and calf-2 domains (1). The $\beta7$ ECD contains a vWFA domain, which interacts with the $\alpha4$ β -propeller to form a binding domain. Metal ion binding sites termed MIDAS and LIMBS promote firm adhesion, and another site termed ADMIDAS is a negative regulatory site that promotes rolling (4-6). The human $\alpha4$ ECD shares 85% amino acid sequence identity with the mouse, rat, and canine $\alpha4$ ECD. The human $\beta7$ ECD shares 87% amino acid sequence identity with the rat and mouse $\beta7$ ECD, respectively. Integrin $\alpha4\beta7$ binds the mucosal addressin MAdCAM-1, as well as VCAM-1 and Fibronectin (7). Integrin $\alpha4\beta7$, which is critical for homing to intestinal mucosa, is induced during T cell activation in Peyer's patches or mesenteric lymph nodes (8, 9). Its expression requires signals from local dendritic and stromal cells, including secreted retinoic acid (10, 11). The HIV-1 envelope protein gp120 binds to the active form of Integrin $\alpha4\beta7$, and this may or may not account for the concentration of HIV-1 virus in the gut-associated lymphoid tissue (GALT) (12-14). Integrin $\alpha4\beta7$ may also be involved in lymphocyte trafficking in acute intestinal graft vs. host disease (GVHD) (15).

References:

- 1. Luo, B.H. et al. (2007) Annu. Rev. Immunol. 25:619.
- 2. Takada, Y. *et al.* (1989) EMBO J. **8**:1361.
- 3. Erle, D.J. et al. (1991) J. Biol. Chem. 266:11009.
- 4. Chen, J. et al. (2004) J. Biol. Chem. 279:55556.
- 5. Park, E.J. et al. (2007) J. Clin. Invest. 117:2526.
- 6. Yu, Y. et al. (2012) J. Cell Biol. 196:131.
- 7. Yang, Y. et al. (1998) Eur. J. Immunol. 28:995.
- 8. Wagner, N. *et al.* (1996) Nature **382**:366.
- 9. Johansson-Lindbom, B. and W.W. Agace (2007) Immunol. Rev. 215:226.
- 10. Hammerschmidt, S.I. et al. (2008) J. Exp. Med. 205:2483.
- 11. Edele, F. *et al.* (2008) J. Immunol. **181**:3745.
- 12. Arthos, J. et al. (2008) Nat. Immunol. 9:301.
- 13. Cicala, C. et al. (2009) Proc. Natl. Acad. Sci. USA 106:20877.
- 14. Monteiro, P. et al. (2011) J. Immunol. 186:4618.
- 15. Chen, Y.B. et al. (2013) Bone Marrow Transplant. 48:598.