DESCRIPTION

Source
Mouse myeloma cell line, NS0-derived
Met1-Ser645
Accession # CAA25240

N-terminal Sequence Analysis
Leu25

Predicted Molecular Mass
68.6 kDa

SPECIFICATIONS

SDS-PAGE
110-115 kDa, reducing conditions

Activity
Bioassay data are not available.

Endotoxin Level
<1.0 EU per 1 μg of the protein by the LAL method.

Purity
>95%, by SDS-PAGE under reducing conditions and visualized by silver stain.

Formulation
Lyophilized from a 0.2 μm filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 10 μg/mL in sterile PBS containing at least 0.1% human or bovine serum albumin.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

BACKGROUND

The epidermal growth factor receptor (EGFR) subfamily of receptor tyrosine kinases comprises four members: EGFR (also known as HER1, ErbB1 or ErbB), ErbB2 (Neu, HER2), ErbB3 (HER3), and ErbB4 (HER4). All family members are type I transmembrane glycoproteins that have an extracellular domain which contains two cysteine-rich domains separated by a spacer region that is involved in ligand binding, and a cytoplasmic domain which has a membrane-proximal tyrosine kinase domain and a C-terminal tail with multiple tyrosine autophosphorylation sites. The human EGFR gene encodes a 1210 amino acid (aa) residue precursor with a 24 aa putative signal peptide, a 621 aa extracellular domain, a 23 aa transmembrane domain, and a 542 aa cytoplasmic domain. EGFR has been shown to bind a subset of the EGF family ligands, including EGF, amphiregulin, TGF-α, betacellulin, epiregulin, heparin-binding EGF and neuregulin-2α in the absence of a co-receptor. Ligand binding induces EGFR homodimerization as well as heterodimerization with ErbB2, resulting in kinase activation, tyrosine phosphorylation and cell signaling. EGFR can also be recruited to form heterodimers with the ligand-activated ErbB3 or ErbB4. EGFR signaling has been shown to regulate multiple biological functions including cell proliferation, differentiation, motility and apoptosis. In addition, EGFR signaling has also been shown to play a role in carcinogenesis (1-3).

References: