Recombinant Human PD-1 Fc Chimera
Catalog Number: 1086-PD

DESCRIPTION

Source
Mouse myeloma cell line, NS0-derived human PD-1 protein

<table>
<thead>
<tr>
<th>Source</th>
<th>Mouse myeloma cell line, NS0-derived human PD-1 protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>Human PD-1</td>
<td>(Leu25-Gln167)</td>
</tr>
<tr>
<td>Accession #</td>
<td>Q15116</td>
</tr>
<tr>
<td>IEGRMD</td>
<td></td>
</tr>
<tr>
<td>Human IgG1</td>
<td>(Pro100-Lys330)</td>
</tr>
</tbody>
</table>

N-terminal Sequence Analysis
Leu25

Structure / Form
Disulfide-linked homodimer

Predicted Molecular Mass
42.6 kDa (monomer)

SPECIFICATIONS

SDS-PAGE
60-70 kDa, reducing conditions

Activity
Measured by its binding ability in a functional ELISA.
When Recombinant Human PD-1 Fc Chimera is immobilized at 0.1 µg/mL (100 µL/well), Recombinant Human B7-H1/PD-L1 Fc Chimera (Catalog # 156-B7) binds with a typical ED50 of 0.15-0.75 µg/mL.

Endotoxin Level
<0.01 EU per 1 µg of the protein by the LAL method.

Purity
>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.

Formulation
Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details.

PREPARATION AND STORAGE

Reconstitution
Reconstitute at 0.5 mg/mL in sterile PBS.

Shipping
The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.

Stability & Storage
Use a manual defrost freezer and avoid repeated freeze-thaw cycles.
- 12 months from date of receipt, -20 to -70 °C as supplied.
- 1 month, 2 to 8 °C under sterile conditions after reconstitution.
- 3 months, -20 to -70 °C under sterile conditions after reconstitution.

DATA

Bioactivity

When Recombinant Human PD-1 Fc Chimera (Catalog # 1086-PD) is coated at 0.1 µg/mL, Recombinant Human B7-H1/PD-L1 Fc Chimera (Catalog # 156-B7) binds with a typical ED50 of 0.15-0.75 µg/mL.
PD-1 (Programmed Death-1 receptor), also known as CD279, is a receptor expressed on T cells responsible for modulating T cell activation. Like CTLA-4, PD-1 is classified as an immune checkpoint inhibitory receptor. When PD-1 protein binds to PD-L1, it initiates a negative signaling cascade inhibiting activation of T cells. The cytoplasmic tail contains two tyrosine residues that form the immunoreceptor tyrosine-based inhibitory motif (ITIM) and immunoreceptor tyrosine-based switch motif (ITSM) that are important for mediating PD-1 signaling. Normally, PD-1 helps keep T cells from attacking other cells in the body. However, many cancers take advantage of this by expressing high amounts of PD-L1 allowing cancer cells to evade the body’s own immune response. Blocking the PD-1:PD-L1 interaction has proven successful in treating many different cancer types.

PD-1 protein is a type I transmembrane receptor belonging to the CD28 family of immune regulatory receptors (1). Other members of this family include CD28, CTLA-4, ICOS, and BTLA (2-5). Mature human PD-1 consists of an extracellular region (ECD) with one immunoglobulin-like V-type domain, a transmembrane domain, and a cytoplasmic region. The mature ECD of human PD-1 shares 61% amino acid sequence identity with mouse PD-1 ECD. PD-1 protein acts as a monomeric receptor and interacts in a 1:1 stoichiometric ratio with its ligands PD-L1 (B7-H1) and PD-L2 (B7-DC) (6, 7). PD-1 is expressed on activated T cells, B cells, monocytes, and dendritic cells while PD-L1 expression is constitutive on the same cells and also on nonhematopoietic cells such as lung endothelial cells and hepatocytes (8, 9). Ligation of PD-L1 with PD-1 induces co-inhibitory signals on T cells promoting their apoptosis, anergy, and functional exhaustion (10). Thus, the PD-1:PD-L1 interaction is a key regulator of the threshold of immune response and peripheral immune tolerance (11).

References:
1. Ishida, Y. et al. (1992) EMBO J. 11:3887.