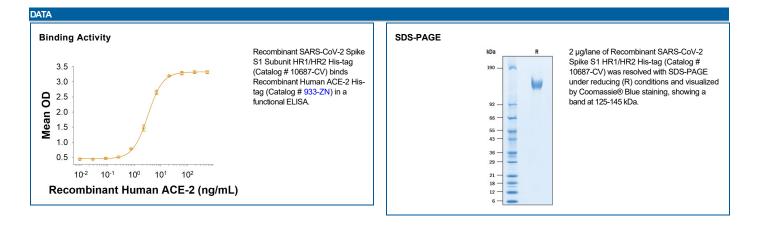


Recombinant SARS-CoV-2 Spike S1 Subunit HR1/HR2 His-tag


Catalog Number: 10687-CV

DESCRIPTION				
Source	Chinese Hamster Ovary cell line, CHO-derived sars-cov-2 Spike S1 Subunit protein			
	SARS-CoV-2 Spike S1 (Val16-Pro681) Accession # YP_009724390.1	HR1/HR2	ннннн	
	N-terminus C-terr			
N-terminal Sequence Analysis	Val16			
Predicted Molecular Mass	92 kDa			

SPECIFICATIONS		
SDS-PAGE	125-145 kDa, under reducing conditions	
Activity	Measured by its binding ability in a functional ELISA with Recombinant Human ACE-2 His-tag (Catalog # 933-ZN).	
Endotoxin Level	<0.10 EU per 1 μ g of the protein by the LAL method.	
Purity	>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.	
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS with Trehalose. See Certificate of Analysis for details.	

PREPARATION AND STORAGE		
Reconstitution	Reconstitute at 500 μg/mL in PBS.	
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.	
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles.	
	 12 months from date of receipt, -20 to -70 °C as supplied. 	
	1 month, 2 to 8 °C under sterile conditions after reconstitution.	

• 3 months, -20 to -70 °C under sterile conditions after reconstitution.

Rev. 12/23/2020 Page 1 of 2

Global bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL +1 612 379 2956 USA TEL 800 343 7475 Canada TEL 855 668 8722 China TEL +86 (21) 52380373 Europe | Middle East | Africa TEL +44 (0)1235 529449

Recombinant SARS-CoV-2 Spike S1 Subunit HR1/HR2 His-tag

Catalog Number: 10687-CV

BACKGROUND

SARS-CoV-2, which causes the global pandemic coronavirus disease 2019 (Covid-19), belongs to a family of viruses known as coronaviruses that are commonlycomprised of four structural proteins: Spike protein(S), Envelope protein (E), Membrane protein (M), and Nucleocapsid protein (N) (1). SARS-CoV-2 Spike Protein (S Protein) is a glycoprotein that mediates membrane fusion and viral entry. The S protein is homotrimeric, with each ~180-kDa monomer consisting of two subunits, S1 and S2 (2). In SARS-CoV-2, as with most coronaviruses, proteolytic cleavage of the S protein into two distinct peptides, S1 and S2 subunits, is required for activation. The S1 subunit is focused on attachment of the protein to the host receptor, while the S2 subunit is involved with cell fusion (3-5). A metallopeptidase, angiotensin-converting enzyme 2 (ACE2), has been identified as a functional receptor for SARS-CoV-2 through interaction with a receptor binding domain (RBD) located at the C-terminus of S1 subunit of (G,7). The S1 subunit of SARS-CoV-2 virus binds ACE2 with higher affinity and faster binding kinetics than its SARS-CoV-1 counterpart (9). Before binding to the ACE2 receptor, structural analysis of the S1 trimer shows that only one of the three RBD domains in the trimeric structure is in the "up" conformation. This is an unstable and transient state that passes between trimeric subunits but is nevertheless an exposed state to be targeted for neutralizing antibody therapy (10). Polyclonal antibodies to the RBD of the SARS-CoV-2 S1 subunit have been shown to inhibit interaction with the ACE2 receptor, confirming RBD as an attractive target for vaccinations or antiviral therapy (11). There is also promising work showing that the RBD may be used to detect presence of neutralizing antibodies present in a patient's bloodstream, consistent with developed immunity after exposure to the SARS-CoV-2 virus (12). Lastly, it has been demonstrated the SARS-coV-2 virus (13, 14).

References:

- 1. Wu, F. et al. (2020) Nature 579:265.
- 2. Tortorici, M.A. and D. Veesler (2019). Adv. Virus Res. 105:93.
- 3. Bosch, B.J. et al. (2003) J. Virol. 77:8801.
- 4. Belouzard, S. et al. (2009) Proc. Natl. Acad. Sci. 106:5871.
- 5. Millet, J.K. and G. R. Whittaker (2015) Virus Res. 202:120.
- 6. Li, W. *et al*. (2003) Nature **426**:450.
- 7. Wong, S.K. et al. (2004) J. Biol. Chem. 279:3197.
- 8. Jiang, S. et al. (2020) Trends. Immunol. https://doi.org/10.1016/j.it.2020.03.007.
- 9. Ortega, J.T. et al. (2020) EXCLI J. 19:410.
- 10. Wrapp, D. et al. (2020) Science 367:1260.
- 11. Tai, W. et al. (2020) Cell. Mol. Immunol. https://doi.org/10.1016/j.it.2020.03.007.
- 12. Okba, N. M. A. et al. (2020). Emerg. Infect. Dis. https://doi.org/10.3201/eid2607.200841.
- 13. Wang, X. et al. (2020) https://doi.org/10.1038/s41423-020-0424-9
- 14. Wang, K. et al. (2020) bioRxiv https://www.biorxiv.org/content/10.1101/2020.03.14.988345v1.

Rev. 12/23/2020 Page 2 of 2

Global bio-techne.com info@bio-techne.com techsupport@bio-techne.com TEL +1 612 379 2956 USA TEL 800 343 7475 Canada TEL 855 668 8722 China TEL +86 (21) 52380373 Europe | Middle East | Africa TEL +44 (0)1235 529449