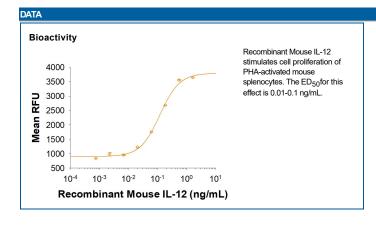
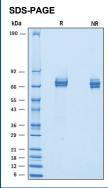


Recombinant Mouse IL-12 (linked heterodimer)


Catalog Number: 10051-ML


Source	Mouse myeloma cell line, NS0-derived mouse IL-12 protein			
	Mouse IL-12 p40 (Met23-Ser335) Accession # P43432	GGGGSGGGGSGGGS	Mouse IL-12 p35 (Arg23-Ala215) Accession # P43431	

N-terminal Sequence Met23 Analysis		
Structure / Form	GS-linked heterodimer	
Predicted Molecular	58 kDa	

SPECIFICATIONS		
SDS-PAGE	62-82 kDa, reducing conditions	
Activity	Measured in a cell proliferation assay using PHA-activated mouse splenocytes. Mattner, F. et al. (1993) Eur. J. Immunol. 23:2202. The ED ₅₀ for this effect is 0.01-0.1 ng/mL.	
Endotoxin Level	<0.10 EU per 1 μg of the protein by the LAL method.	
Purity	>95%, by SDS-PAGE visualized with Silver Staining and quantitative densitometry by Coomassie® Blue Staining.	
Formulation	Lyophilized from a 0.2 µm filtered solution in PBS with BSA as a carrier protein. See Certificate of Analysis for details.	

PREPARATION AND STORAGE		
Reconstitution	Reconstitute at 100 µg/mL in PBS.	
Shipping	The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below.	
Stability & Storage	Use a manual defrost freezer and avoid repeated freeze-thaw cycles. 12 months from date of receipt, -20 to -70 °C as supplied. 1 month, 2 to 8 °C under sterile conditions after reconstitution. 3 months, ≤ -20 °C under sterile conditions after reconstitution.	

2 µg/lane of Recombinant Mouse IL-12 was resolved with SDS-PAGE under reducing (R) and non-reducing (NR) conditions and visualized by Coomassie® Blue staining, showing bands at 62-82 kDa.

Rev. 1/13/2021 Page 1 of 2

Recombinant Mouse IL-12 (linked heterodimer)

Catalog Number: 10051-ML

BACKGROUND

Interleukin 12, also known as natural killer cell stimulatory factor (NKSF) or cytotoxic lymphocyte maturation factor (CLMF), is a pleiotropic cytokine originally identified in the medium of activated B lymphoblastoid cell lines (1). The p40 subunit of IL-12 has been shown to have extensive amino acid sequence homology to the extracellular domain of the IL-6 receptor while the p35 subunit shows distant but significant sequence similarity to IL-6, G-CSF, and chicken MGF (2, 3). These observations have led to the suggestion that IL-12 might have evolved from a cytokine/soluble receptor complex. Murine and human IL-12 share 70% and 60% amino acid sequence homology in their p40 and p35 subunits, respectively. IL-12 apparently shows species specificity with human IL-12 reportedly showing minimal activity in the murine system. IL-12 is produced by macrophages and B lymphocytes and has been shown to have multiple effects on T cells and natural killer (NK) cells (4). These effects include inducing production of IFN-gamma and TNF by resting and activated T and NK cells, synergizing with other IFN-gamma inducers at both the transcriptional and post-transcriptional levels. This interaction induces IFN-gamma gene expression, enhancing the cytotoxic activity of resting NK and T cells, inducing and synergizing with IL-2 in the generation of lymphokine-activated killer (LAK) cells, acting as a co-mitogen to stimulate proliferation of resting T cells, and inducing proliferation of activated T and NK cells (5). Current evidence indicates that IL-12, produced by macrophages in response to infectious agents, is a central mediator of the cell-mediated immune response by its actions on the development, proliferation, and activities of TH1 cells. In its role as the initiator of cell-mediated immune responses to microbial pathogens, metastatic cancers, and viral infections such as AIDS.

References:

- 1. Gubler, U. et al. (1991) Proc. Natl. Acad. Sci. 88:4143.
- 2. Gearing, D. et al. (1991) Cell 66:9.
- 3. Merberg, D. et al. (1992) Immunology Today 13:78
- 4. Wolf, S.F. et al. (1991) Journal of Immunology 146:3074.
- 5. Airoldi, I. et al. (2000) Journal of Immunology 165:6880.