


### Fluorescent Dyes and Probes

Bio-Techne, through the Tocris brand, offers a wide range of gold standard fluorescent dyes, as well as exclusive and spectrally enhanced dyes, designed and manufactured in-house. These include probes conjugated to the next generation Janelia Fluor® dyes, known for their brightness, superior photostability and applications in advanced microscopy and live cell imaging.

We also provide aptamer-based RNA imaging reagents, enhanced Tyramide Signal Amplification (TSA) reagents and kits for spatial biology, and fluorescent probes covering specific targets to facilitate the visualization of sub-cellular components in live and fixed cells as well as in organoids and 3D cells. Also in our portfolio are dyes and probes to support your in vivo, deep tissue, and bioluminescence imaging.

For up-to-date product listings, visit tocris.com/
fluorescent-imaging. This brochure lists fluorescence
imaging reagents conveniently organized by type for easy
selection. Feature boxes throughout this listing identify the
main principles of imaging technology and the application
of corresponding product ranges.

# Brochure cover, image kindly provided by Fu-Chen Yang and Harrison Besser, University of Stanford,

#### Contents

#### **Fluorescent Dyes** Fluorescent Dye Reactive Handles Janelia Fluor® Dyes **Applications** 1- Advanced Microscopy and Live **Cell Imaging** Super-Resolution Microscopy MitoBrilliant™ Probes 10 Microtubule Probes Fluorescent DNA Probes 11 Spontaneously Blinking Janelia Fluor® Dyes 13 JFX™ Dyes Self-labeling Tags 13 Janelia Fluor® Haloalkanes dyes 14 dTAG Janelia Fluor® Dyes Aptamer-based RNA Imaging Technology Aptamer-based RNA Imaging Reagents 16 Anti-Fade Reagents 2- Spatial Biology TSA Reagents for Enhancing IHC, ICC & FISH Signals TSA Vivid™ Fluorophore Kits 18 Tissue Clearing 20 3- Organoids and 3D Cell Culture Imaging 21 Probes and Reagents for Organoids and 3D Cell Culture Imaging 21 In Vivo, Deep Tissue, and **Bioluminescence Imaging** 24 In Vivo and Deep Tissue Imaging Near Infrared (NIR) Fluorescent Dyes 24 25 **SCOTfluor Probes** 25 Amyloid β Probes Substrates for Bioluminescent Imaging 5- High Content Imaging 27 6- Imaging Bacteria 28 Fluorescent Probes for Imaging Bacteria 28

**Other Fluorescent Probes and Stains** 

29

#### **List of Product Lines**

| Anti-fade Reagents                                   | 16        |
|------------------------------------------------------|-----------|
| Aptamer-based RNA Imaging Reagents                   | 16        |
| Bioluminescent Substrates                            | 26        |
| Cell Viability, Apoptosis and                        |           |
| Proliferation Probes                                 | 21        |
| dTAG Janelia Fluor® Dyes                             | 14        |
| Enzyme Probes and Enzyme Substrates                  | 30        |
| Fluorescent Actin Probes                             | 27        |
| Fluorescent Amyloid β Probes                         | 25        |
| Fluorescent Probes for Imaging Bacteria              | 28        |
| Fluorescent Cell Indicators and Sensors              | 30        |
| Fluorescent Cholesterol Probes                       | 30        |
| Fluorescent DNA Probes and Stains                    | 11,22     |
| Fluorescent Dyes                                     | 4         |
| Fluorescent Integrin Probes                          | 30        |
| Fluorescent Ion Indicators                           | 30        |
| Fluorescent Lipid Probes and Cell<br>Membrane Stains | 27        |
| Fluorescent Lysosome Probes                          | 27        |
| Fluorescent Receptor Probes                          | 30,31     |
| Fluorescent RNA Probes                               | 31        |
| Fluorescent Transporter Probes                       | 31        |
| Histology Stains                                     | 31        |
| Janelia Fluor® Haloalkanes                           | 14        |
| JFX™ Dyes                                            | 13        |
| Microtubule Probes                                   | 10,27     |
| Mitochondrial Probes                                 | 8,9,22,27 |
| Neuron and Astrocyte Probes                          | 31        |
| NIR Fluorescent Dyes                                 | 24        |
| ROS Probes                                           | 22        |
| SCOTfluor Probes                                     | 25        |
| Self-tag Imaging Products                            | 14        |
| Stem Cell Probes                                     | 22        |
| Spontaneously Blinking<br>Janelia Fluor® Dyes        | 12        |
| Tissue Clearing                                      | 20        |
| TSA Vivid™ Fluorophore Kits                          | 19        |
| Tyramine Signal Amplification (TSA) Reagents         | 18        |
|                                                      |           |

#### Fluorescent Dyes

Fluorescent dyes, or fluorophores, enable researchers to identify, probe and visualize specific biological molecules using technologies including fluorescence microscopy and flow cytometry. Dyes can be classified according to some key features known as 'photophysical' properties, which include the maximum absorption and emission wavelengths (λabs/ λem), and brightness, which is equal to extinction coefficient (ε) multiplied by quantum yield (φ). The Tocris range includes the Janelia Fluor® Dyes, which are bright, highly photostable and cell-permeable, making them ideal for confocal fluorescent imaging and super-resolution microscopy (SRM) techniques in live and fixed cells. Also included in our portfolio are novel fluorophores in the near-IR range, for deep tissue and in vivo imaging work, together with a comprehensive palette of wellknown, gold standard dyes for all your imaging requirements.

| Product Name                  | Reactive<br>Group | Cat# | Abs<br>(nm) | Em<br>(nm) | Emission<br>Color |
|-------------------------------|-------------------|------|-------------|------------|-------------------|
| 3-Azido-7-<br>hydroxycoumarin | Azide             | 7664 | 404         | 477        | Blue              |
| Ocean Blue                    | NHS ester         | 6489 | 405         | 455        |                   |
| BDY FL                        | NHS ester         | 5465 | 502         | 510        | Graan             |
| FITC                          | Isothiocyanate    | 5440 | 495         | 525        | Green             |
| Janelia Fluor® 525            | NHS ester         | 6296 | 525         | 549        |                   |
| HM Janelia Fluor®<br>526      | NHS ester         | 7312 | 526         | 550        |                   |
| Janelia Fluor® 526            | NHS ester         | 7316 | 526         | 550        |                   |
| PA Janelia Fluor®             | NHS ester         | 6149 | 553         | 573        |                   |
| 549                           | Maleimide         | 8133 | 650         | 664        | Yellow            |
|                               | Maleimide         | 6500 | 549         | 571        |                   |
|                               | Tetrazine         | 6502 | 549         | 571        |                   |
| Janelia Fluor® 549            | NHS ester         | 6147 | 549         | 571        |                   |
|                               | Free acid         | 6503 | 549         | 571        |                   |
| Janelia Fluor® 585            | NHS ester         | 6418 | 585         | 609        |                   |
|                               | NHS ester         | 6419 | 635         | 652        |                   |
| Janelia Fluor® 635            | Maleimide         | 8027 | 645         | 664        |                   |
|                               | Tetrazine         | 8134 | 635         | 652        |                   |
| PA Janelia Fluor®<br>646      | NHS ester         | 6150 | 651         | 665        |                   |
|                               | Maleimide         | 6590 | 646         | 664        | Orange/Red        |
|                               | Free acid         | 6993 | 646         | 664        |                   |
| Janelia Fluor® 646            | Azide             | 7088 | 646         | 664        |                   |
|                               | Tetrazine         | 7279 | 646         | 664        |                   |
|                               | NHS ester         | 6148 | 646         | 664        |                   |
| Cyanine 5                     | NHS ester         | 5436 | 649         | 666        |                   |
| Janelia Fluor® 669            | NHS ester         | 6420 | 669         | 682        | Far Red           |
| Janena Fiuor © 009            | Maleimide         | 8097 | 669         | 689        | rai keu           |
| FNIR-Tag                      | NHS ester         | 7373 | 765         | 788        |                   |
| Indocyanine green             |                   | 7510 | 787         | 815        | Near-IR           |
| NIR Dye s775z                 | NHS ester         | 7626 | 775         | 795        | Trour III         |

BODIPY® is a registered trademark of Molecular Probes, Inc, a Thermo Fisher Scientific Company.

Janelia Fluor® is a registered trademark of Howard Hughes Medical Institute.

#### **Fluorescent Dye Reactive Handles**

**Fluorescent dyes** are available with a range of reactive handles to easily label various biomolecules. Common reactive groups include: succinimidyl esters (SE / NHS esters), maleimides, free acids and click handle groups including tetrazine and DBCO handles to support copperfree, bioorthogonal click chemistry, and azide / alkyne handles to support copper-catalyzed click chemistry.

Range of reactive handles groups and their reactivity are summarized in the table below.



#### Protocols for Fluorescent Dye Conjugation

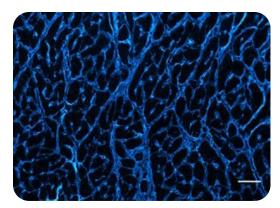
Scan the QR Code or visit: bio-techne.com

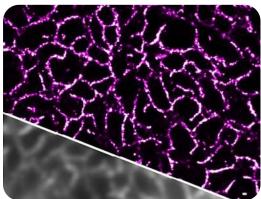
| Handle Groups                             | Reactivity                                                                                                                                                                                                                                                                                                                                                                                 | Labeling Reaction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Succinimidyl Esters,<br>(SE / NHS esters) | NHS ester derivatives are suitable for modifying primary amines, which are prevalent on the surface of antibodies and other proteins due to the lysine side chain.                                                                                                                                                                                                                         | H <sub>2</sub> N—Target Module  Dye                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Maleimides                                | Maleimides react with thiols (sulfhydryl groups) and provide a convenient route to label cysteine residues in proteins and peptides.                                                                                                                                                                                                                                                       | HS Target Module  Dye N S Target Module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Free Acids                                | Free acid reactive groups are commonly used in the preparation of Halo- and SNAP-tag ligands via amide coupling reactions.                                                                                                                                                                                                                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                           | Cu(I)-catalyzed Azide-Alkyne Click Chemistry reaction (CuAAC):  The CuAAC reaction couples an alkyne with an azide using copper as a catalyst, forming a stable 1,4-disubstituted 1,2,3-triazole-linked conjugate.                                                                                                                                                                         | R <sub>1</sub> + R <sub>2</sub> -N <sub>3</sub> Cu(I) N N N R <sub>1</sub> N N Alkyne Azide 1,2,3-triazole-linked conjugate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Click Handle Groups                       | Strain-promoted Azide-Alkyne Click Chemistry reaction (SPAAC) (copper-free):  The SPAAC reaction avoids the use of copper by incorporating the triple bond into a cyclooctyne. The cyclooctyne, DBCO (dibenzocyclooctyne, also known as DIBAC) is commonly used as a reactive handle for this reaction providing relatively rapid reaction kinetics and good stability in aqueous buffers. | $R_2$ - $N_3$ + $R_1$ $R_2$ $R_1$ $R_2$ $R_3$ $R_2$ $R_3$ $R_4$ $R_4$ $R_5$ $R_$ |
|                                           | Tetrazine ligation based on Inverse-Electron-Demand Diels-Alder (IEDDA) chemistry:  The IEDDA reaction is the ultrafast cycloaddition between a strained double bond (commonly transcyclooctene) and a labeled tetrazine.                                                                                                                                                                  | Alkene R <sub>3</sub> Dihydropyrazine conjugate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

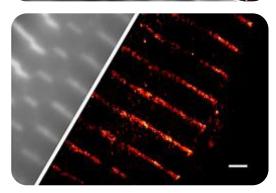
#### Janelia Fluor® Dyes

Developed by Professor Luke Lavis and his team at the Janelia Research Campus, Janelia Fluor® dyes provide scientists with an exceptional palette of bright, photostable fluorophores for a broad range of applications including super-resolution microscopy. The Janelia Fluor® range includes products with different specific and useful properties, such as: fluorogenicity; spontaneous blinking (for facile single-molecule localization microscopy (SMLM)); and photoactivation.

#### Janelia Fluor® Dye Key Features and Applications


- · Exceptionally bright, highly photostable
- Cell permeable
- · Especially well-suited to live-cell imaging
- Supplied with a choice of reactive groups for simple biomolecule conjugation
- Can be converted to relevant substrate for use in self-labeling tag systems, e.g. HaloTag® and SNAP-tag®
- Suitable for use in confocal microscopy, IHC, ICC, and flow cytometry
- Ideal for super-resolution techniques including STED and dSTORM
- Photoactivatable Janelia Fluor® dyes compatible with PALM microscopy


The full range of Janelia Fluor® dyes are available from Tocris with a selection of reactive groups for conjugation to biomolecules.


#### Hear exclusively from Luke Lavis, the inventor of Janelia Fluor® Dyes



In this episode of the Back of the Napkin podcast, discover how the work of Luke Lavis at the Janelia Research Campus has pushed the boundaries of fluorescence imaging. His development of Janelia Fluor® dyes has significantly improved live-cell and superresolution imaging capabilities.



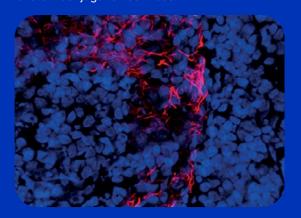




Application of Janelia Fluor® Dyes in Cardiac Tissue: Top — Widefield fluorescence image displaying the distribution of collagen VI in the interstitial space between muscle cells. Labeled with primary antibody against collagen VI and secondary antibody conjugated to Janelia Fluor® 549 (Cat# 6147). Scale: 50 µm. Middle — An adult pig heart tissue section, 10 µm thick, labeled with antibody against SERCA2ATPase, exhibits the intricate structure of the sarcoplasmic reticulum. A super-resolution image (top), obtained by exploiting spontaneous photo-switching of Janelia Fluor® 549 (dSTORM), shows superior detail to the diffraction limited widefield image (bottom). Scale: 200 nm. Bottom - Rat cardiomyocyte stained against α-actinin, displaying its periodic structure localized at the ends of sarcomeres (Z-discs). Widefield fluorescence of Janelia Fluor® 549 (left), prior to illuminating with a 561nm laser to induce photoswitching and produce a dSTORM superresolution image (right). Scale: 1 µm. All images kindly provided by Prof. Christian Soeller, University of Exeter; acquired by Alex Clowsley and Anna Meletiou.

#### What Researchers are Saying about Janelia Fluor® Conjugates

We have been using the Janelia Fluor® secondary antibodies and like them a lot for IHC. As advertised, they seem to be at least a little brighter and more photostable than the Alexa 647 and Cy3 dyes we had been using. We will probably switch over to these completely going forward.


— Steve Stowes, PhD, Assistant Professor Montana State University

It's a great antibody and great fluorophore by its signal sharpness and photostability.

— Anonymous

#### **Custom Conjugation Service**

In addition to a wide range of pre-conjugated options, including Janelia Fluor\* - conjugated antibodies, Bio-Techne also offers custom conjugation services.





**Learn More** 

Scan the QR Code or visit: bio-techne/services/ custom-antibody-services



**Conjugation Protocols** 

Scan the QR Code or visit: bio-techne.com/protocols

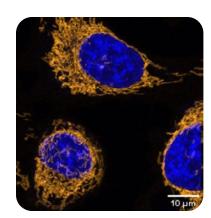
#### **Applications**

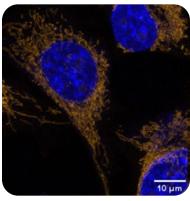
#### 1 Advanced Microscopy and Live Cell Imaging

Fluorescence imaging has benefited in recent years from breakthrough advances in technology and instrumentation that now enable visualization and tracking of individual biomolecules and biological structures in live cells.

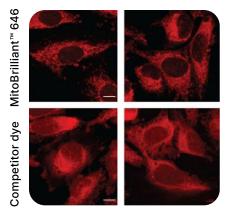
#### **Super-Resolution Microscopy**

Super-resolution microscopy (SRM) techniques such as STED, STORM, dSTORM, PALM and FPALM provide far greater resolution images of cellular structures compared to traditional light microscopy. These techniques rely on the availability of advanced fluorescent dyes and probes that have been engineered to perform under a given set of experimental conditions.


Bright and highly photostable, Janelia Fluor® dyes are ideal for superresolution microscopy and are especially suited for live-cell imaging.


#### MitoBrilliant™ Probes

MitoBrilliant™ probes are next-generation fluorescent stains for the localization and tracking of mitochondria in both live and fixed-cells. The MitoBrilliant range harnesses **Janelia Fluor® dye technology**, conferring some of the properties of these dyes into mitochondrial stains.

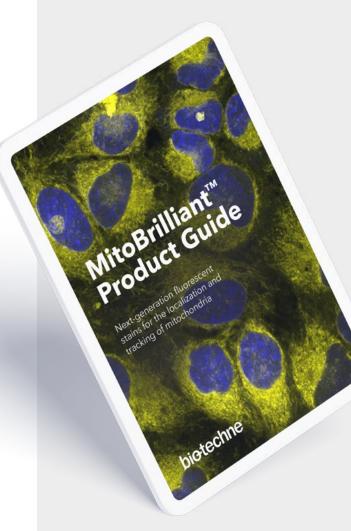

The 'MitoBrilliant Live' dyes accumulate in the mitochondria of live cells in a mitochondrial membrane potential ( $\Delta \psi m$ ) dependent manner. Upon loss of the mitochondrial membrane potential, the dyes disperse, providing a dynamic assessment of the mitochondrial membrane potential in live cells. Two MitoBrilliant Live dyes are available: MitoBrilliant™ Live 646 (Cat# 7417; red emission) and MitoBrilliant™ Live 549 (Cat# 7693; yellow/orange emission). They are suitable for use in flow cytometry, imaging and high-content screening.

MitoBrilliant™ 646 (Cat# 7700; red emission) is a corresponding probe suitable for both live and fixed-cell staining. It is retained in mitochondria following fixation with exceptionally bright staining and is suitable for use in flow cytometry, imaging, high-content screening and STED super-resolution microscopy.





Mitochondrial probe brightness comparison: HeLa cells incubated with 100 nM of MitoBrilliant™ live 549 (top) or 100 nM of a leading competitor dye (above), for 40 min. Cells were counterstained with DAPI (Cat# 5748). Image taken using an LSM880 Confocal with a 63X objective with the same setting for both images.




Performance of MitoBrilliant™ 646 after fixation: HeLa cells incubated with 100 nM of MitoBrilliant™ 646 or competitor dye for 40 min, then fixed for 10 min in 4% PFA. Images taken using an LSM880 Confocal and 63x oil objective. Scale bar = 10 μm

| Product<br>Name            | Cat# | Description                                                                                 | λ Abs<br>(nm) | λ Em<br>(nm) |
|----------------------------|------|---------------------------------------------------------------------------------------------|---------------|--------------|
| MitoBrilliant™<br>646      | 7700 | Fluorescent<br>mitochondrial<br>probe for live and<br>fixed-cell imaging<br>(red emission)  | 655           | 668          |
| MitoBrilliant™<br>Live 549 | 7693 | Fluorescent<br>mitochondrial<br>probe for live-cell<br>imaging (yellow/<br>orange emission) | 550           | 568          |
| MitoBrilliant™<br>Live 646 | 7417 | Fluorescent<br>mitochondrial<br>probe for live-cell<br>imaging (red<br>emission)            | 648           | 662          |

#### MitoBrilliant™ Research Product Guide

Our guide highlights the use of MitoBrilliant in different research applications and provides background information on mitochondria.

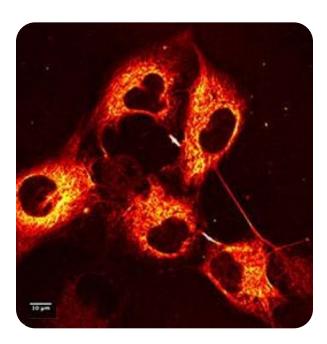




#### Download here

Scan the QR Code or visit: bio-techne.com/resources/ literature/mitobrilliant-dyesproduct-guide

#### **Microtubule Probes**


#### Featured Microtubule Probe - Taxol Janelia Fluor® 646

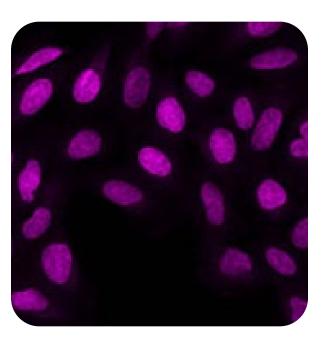
Taxol Janelia Fluor® 646 is a red-fluorescent taxol derivative for direct imaging of the microtubule cytoskeleton. This fluorogenic dye fluoresces only once bound to microtubules, enabling hassle-free no-wash experiments. Excitation maximum = 655 nm; emission maximum = 671 nm.



#### **Protocol Available**

Scan the QR Code or visit: bio-techne.com/resources/ protocols-troubleshooting/ protocol-taxol-janelia-fluor-646



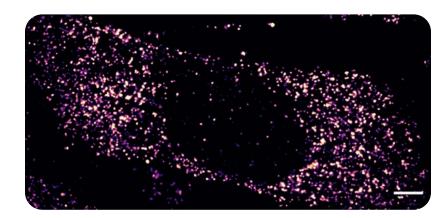

Application of Taxol Janelia Fluor® 646, dye on COS7 cells: COS7 cells were labeled with 3 µM Taxol Janelia Fluor® 646 for one hour at 37°C. Images were taken on a Leica TCS SP8 Confocal Laser Scanning Microscope. All images kindly provided by Prof. Christian Soeller, University of Exeter; acquired by Evelina Lucinskaite, Anna Meletiou and Alexander Clowsley.

| Product Name             | Cat# | Description                                                                             | λ Abs<br>(nm) | λ Em<br>(nm) |
|--------------------------|------|-----------------------------------------------------------------------------------------|---------------|--------------|
| Flutax 1                 | 2226 | Fluorescent taxol derivative; binds microtubules                                        | 495           | 520          |
| Flutax 2                 | 6254 | Green-fluorescent taxol derivative; binds microtubules                                  | 496           | 526          |
| Taxol Janelia Fluor® 526 | 7315 | Green-fluorescent taxol derivative; probe for microtubule staining                      | 531           | 549          |
| Taxol Janelia Fluor® 549 | 6267 | Yellow-fluorescent taxol derivative; probe for microtubule staining; protocol available | 556           | 575          |
| Taxol Janelia Fluor® 646 | 6266 | Red-fluorescent taxol derivative; probe for microtubule staining; protocol available    | 655           | 671          |

#### **Fluorescent DNA Probes**

#### Featured Fluorescent DNA Stain - Hoechst Janelia Fluor® 646

Hoechst Janelia Fluor® 646 is a fluorogenic redemitting DNA probe; it preferentially stains and binds minor grooves of AT-rich regions. It can be combined with fluorogenic green-emitting DNA probe Hoechst Janelia Fluor® 526 for multiplexing experiments. This dye can also be combined with Hoechst Janelia Fluor® 526 to perform dual-color stimulated emission depletion microscopy (STED) using the same depletion laser (λdep = 775 nm). This dye is a desirable alternative to large oligonucleotideconjugated antibodies for PAINT (points accumulation for imaging in nanoscale topography) experiments, particularly for bacterial studies. The compound fluoresces only once bound to DNA, i.e. it is fluorogenic, enabling hassle-free, no-wash experiments. It is suitable for multicolor microscopy experiments and for use in live-cell imaging.




Application of Hoechst Janelia Fluor® 646: Fixed U2OS cells were stained with Hoechst Janelia Fluor® 646 (1 μM) for 1 hour and imaged without an intermediate washing step on a LSM980 confocal microscope (Zeiss) using the following configuration: excitation: 633 nm / emission: 638–759 nm. Image kindly provided by Prof. Luke Lavis, Howard Hughes Medical Institute, Janelia Research Campus.

| Product Name                  | Cat# | Description                                                                                                  | λ Abs<br>(nm)     | λ Em<br>(nm)      |
|-------------------------------|------|--------------------------------------------------------------------------------------------------------------|-------------------|-------------------|
|                               |      |                                                                                                              | 502<br>(double    | 525<br>strand)    |
| Acridine Orange               | 5092 | Nucleic acid binding dye                                                                                     | 460<br>(single s  | 650<br>strand)    |
|                               |      |                                                                                                              | 475<br>(acidic co | 590<br>onditions) |
| 7-Aminoactinomycin D          | 7121 | Fluorescent DNA stain                                                                                        | 549               | 655               |
| DAPI                          | 5748 | Fluorescent DNA stain                                                                                        | 350               | 470               |
| Hoechst 33342                 | 5117 | Fluorescent dye for labeling DNA                                                                             | 350               | 461               |
| Hoechst Janelia Fluor®<br>526 | 7313 | Fluorogenic, green-emitting DNA probe                                                                        | 531               | 549               |
| Hoechst Janelia Fluor®<br>646 | 6804 | Fluorogenic, red-emitting DNA probe                                                                          | 655               | 670               |
| Propidium Iodide              | 5135 | Red-fluorescent DNA stain; membrane impermeant to live cells. PI staining differentiates live and dead cells | 535               | 617               |

#### Spontaneously Blinking Janelia Fluor® Dyes

Spontaneously Blinking Janelia Fluor® Dyes allow facile single-molecule localization microscopy (SMLM) in cells and dense biomolecular structures, without the need for photo activation or redox buffers. These spontaneously blinking dyes harness Janelia Fluor® technology to deliver dyes that automatically cycle between 'off' and 'on' states with an ideal duty cycle for super-resolution microscopy experiments.



Application of Janelia Fluor® 646b, NHS ester: SOFI RNA-FISH image of mouse embryo fibroblast cells expressing MS2 in the 3' UTR of the beta-actin gene and labeled with Janelia Fluor® 646b-oligonucleotide from Janelia Fluor® 646b, NHS ester; scale bar: 5  $\mu m$ . Image kindly provided by Luke D. Lavis, Janelia Research Campus.

| Product Name                      | Cat# | Reactive<br>Group | Description                                                                                                          | λ Abs<br>(nm) | λ Em<br>(nm) |
|-----------------------------------|------|-------------------|----------------------------------------------------------------------------------------------------------------------|---------------|--------------|
| Janelia Fluor®<br>630b, Maleimide | 8154 |                   |                                                                                                                      | 651           | 666          |
| Janelia Fluor®<br>635b, Maleimide | 8156 | Maleimide         | Blinking fluorescent (thiol reactivity). Application: super-resolution microscopy including SMLM                     | 651           | 667          |
| Janelia Fluor®<br>646b, Maleimide | 8158 |                   |                                                                                                                      | 662           | 674          |
| Janelia Fluor®<br>630b, NHS ester | 8155 |                   | Blinking fluorescent dye for the labeling of primary amines. Application: super-resolution microscopy including SMLM | 654           | 671          |
| Janelia Fluor®<br>635b, NHS ester | 8157 | NHS ester         |                                                                                                                      | 654           | 671          |
| Janelia Fluor®<br>646b, NHS ester | 8159 |                   |                                                                                                                      | 662           | 679          |

#### JFX™ Dyes

JFX™ dyes are deuterated fluorescent Janelia Fluor® dyes which show enhanced brightness, photostability, and chromostability. NHS ester or maleimide reactive groups can be conjugated to proteins, antibodies, or converted to a relevant substrate for use in self-labeling tag systems, e.g. HaloTag® and SNAP-tag®. Suitable for confocal microscopy, super-resolution microscopy (SRM) techniques including dSTORM (in both live and fixed cells), and STED.

| Product Name                        | Cat# | Reactive<br>Group | Description                                                                                                                                                  | λ Abs<br>(nm) | λ Em<br>(nm) |
|-------------------------------------|------|-------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|
| JFX™ 554,<br>Maleimide              | 8160 | NA-L-inside       | Deuterated fluorescent dye (thiol reactivity). Application: confocal microscopy, SRM including dSTORM & STED. Suitable for live cell imaging                 | 554           | 576          |
| JFX™ 650,<br>Maleimide              | 8162 | Maleimide         |                                                                                                                                                              | 650           | 667          |
| JFX™ 554, NHS<br>ester-coming soon! | 8161 | NUI O             | Deuterated fluorescent dye for the labeling of primary amines. Application: confocal microscopy, SRM including dSTORM & STED. Suitable for live cell imaging | 554           | 576          |
| JFX™ 650,<br>NHS ester              | 8163 | NHS ester         |                                                                                                                                                              | 650           | 667          |

#### **Self-labeling Tags**

Self-labeling tags (such as HaloTag®, SNAP-tag® or dTAG) are genetically encoded protein systems for labeling proteins of interest in live cells for a variety of applications such as protein-protein interactions and cellular localization.

Self-labeling tag systems can bind to Janelia Fluor® dye ligands offering several advantages:

- Can be used for fixed and live cell imaging
- Allows use of different fluorophores (multicolor imaging)
- · Suitable for confocal imaging and SRM
- · Higher brightness and photostability

Tocris offers two categories of fluorogenic dye ligands for live cell imaging of self-labeling tags: Janelia Fluor® Haloalkanes and dTAG Janelia Fluor® dyes.

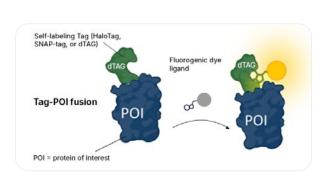



Illustration of self-labeling Tag protein (Halo Tag®, SNAP-tag® or dTAG) fused to a protein of interest (POI) and labeled with a fluorogenic dye ligand.

#### Janelia Fluor® Haloalkane Dyes

Janelia Fluor® Haloalkane dyes are cell-permeable fluorogenic fluorescent dyes with a chloroalkane handle. They can be used for live-cell imaging as a self-labeling tag substrate. Suitable for confocal microscopy, light sheet microscopy, and super-resolution microscopy (SRM) techniques, including dSTORM (in both live and fixed cells). They are stable to fixation, show a high degree of fluorogenicity, and exhibit low non-specific background staining.

| Product Name                         | Cat# | Reactive<br>Group | Description                                                                                                                                                                                                           | λ Abs<br>(nm) | λ Em<br>(nm) |
|--------------------------------------|------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|
| Janelia Fluor®<br>525, Haloalkane    | 8805 |                   |                                                                                                                                                                                                                       | 525           | 549          |
| Janelia Fluor®<br>549, Haloalkane    | 8806 |                   |                                                                                                                                                                                                                       | 549           | 571          |
| Janelia Fluor®<br>585, Haloalkane    | 8807 | — Chloroalkane    | Cell-permeable fluorogenic fluorescent<br>dye. Application: live-cell imaging as a<br>self-labeling tag substrate. Suitable for<br>confocal microscopy, light sheet<br>microscopy, SRM techniques including<br>dSTORM | 585           | 609          |
| Janelia Fluor®<br>635, Haloalkane    | 8808 | — Officioalkarie  |                                                                                                                                                                                                                       | 635           | 652          |
| Janelia Fluor®<br>646, Haloalkane    | 8809 | _                 |                                                                                                                                                                                                                       | 646           | 664          |
| PA Janelia Fluor®<br>646, Haloalkane | 8815 |                   |                                                                                                                                                                                                                       | 646           | 664          |

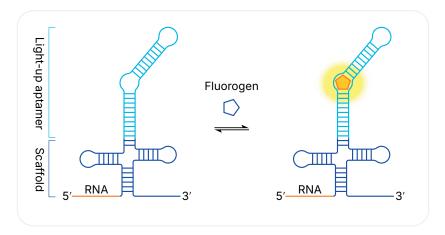
#### dTAG Janelia Fluor® Dyes

Janelia Fluor® dyes together with genetically encoded, self-labeling tags (such as HaloTag® and SNAPTag®) enable researchers to visualize and track individual proteins within cells.

dTAG Janelia Fluor® dyes are fluorogenic srTAG probes for live cell imaging of FKBP12F36V/L fusion proteins.

HaloTag is a trademark of Promega Corporation. SNAP-tag is a trademark of New England BioLabs, Inc.

| Product Name               | Cat# | Description                                                                       | λ Abs<br>(nm) | λ Em<br>(nm) |
|----------------------------|------|-----------------------------------------------------------------------------------|---------------|--------------|
| dTAG Janelia<br>Fluor® 635 | 8101 | Fluorogenic srTAG probe for live cell imaging of FBKP12 (F36V/L) labeled proteins | 640           | 665          |
| dTAG Janelia<br>Fluor® 525 | 8102 | Fluorogenic srTAG probe for live cell imaging of FBKP12 (F36V/L) labeled proteins | 530           | 560          |
| dTAG Janelia<br>Fluor® 585 | 8103 | Fluorogenic srTAG probe for live cell imaging of FBKP12 (F36V/L) labeled proteins | 590           | 620          |


#### **Aptamer-based RNA Imaging Technology**

Light-up aptamers or fluorescent light-up aptamers (FLAPs) are a genetically encoded RNA imaging platform. They are designed to bind specific fluorogenic dyes that 'light-up' only in the bound state. This property of 'fluorogenicity' means that fluorescence can be 'switched on' upon RNA expression.

Light-up aptamer systems offer several advantages over traditional MS2 and GFP imaging systems:

- Fluorogenic nature produces exceptionally high signal-to-noise ratio
- Very bright fluorescent signal
- Light-up aptamers are small RNA tags, thus have a lower propensity to interfere with cellular functions
- Enable direct, fast measurement of gene transcription at the RNA level, providing a more accurate real time observation of RNA localization and promoter activity; GFP can take up to 30 minutes after stimulation to be translated into protein

#### **Light-up Aptamer Principles**



**Example of Light-up Aptamer Application for Monitoring Gene Expression:** RNA with a light-up aptamer coded (light blue structure) is expressed, a fluorogen (orange pentagon) binds and becomes highly fluorescent. Image adapted from Neubacher and Hennig (2019). PMID:30102012.

#### **Aptamer-based RNA Imaging Reagents**

| Product Name       | Cat# | Description                                                                                                                                   | λ Abs<br>(nm) | λ Em<br>(nm) |
|--------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|
| Bl dihydrochloride | 7466 | DFHBI derivative for imaging of RNA in living cells that bind Broccoli aptamers                                                               | 470           | 505          |
| DFHBI              | 5609 | GFP fluorophore mimic for imaging RNA in living cells; activated by binding Spinach2 and Broccoli aptamers                                    | 447           | 501          |
| DFHBI 1T           | 5610 | GFP fluorophore mimic for imaging RNA in living cells; activated by binding Spinach2 and Broccoli aptamers                                    | 482           | 505          |
| DFHO               | 6434 | RFP fluorophore mimic for imaging RNA in living cells; activated by binding Corn aptamers                                                     | 505           | 545          |
| DMHBO+             | 7764 | Fluorescent upon binding to Chili aptamer; for imaging RNA in cells                                                                           | 456           | 592          |
| HBC 530            | 7277 | GFP fluorophore mimic for imaging RNA in live cells; activated by binding to Pepper aptamers; suitable for confocal and two-photon microscopy | 485           | 530          |
| SiRA 2             | 7544 | Fluorogen for SiRA light-up aptamer. Application: confocal microscopy, SRM (including STED)                                                   | 649           | 662          |
| ТВІ                | 7660 | Fluorogenic ligand for Broccoli RNA aptamer                                                                                                   | 485           | 524          |

#### **Anti-Fade Reagents**

Anti-fade reagents provide protection against fading or photobleaching for most common fluorophores used in live and fixed cell fluorescent imaging.

| Product Name    | Cat# | Description                                                                              |
|-----------------|------|------------------------------------------------------------------------------------------|
| L-Ascorbic acid | 4055 | Commonly used anti-fade reagent in live cell microscopy; naturally occurring antioxidant |
| Trolox          | 6002 | Anti-fade reagent; antioxidant vitamin E derivative; cell permeable and water soluble    |

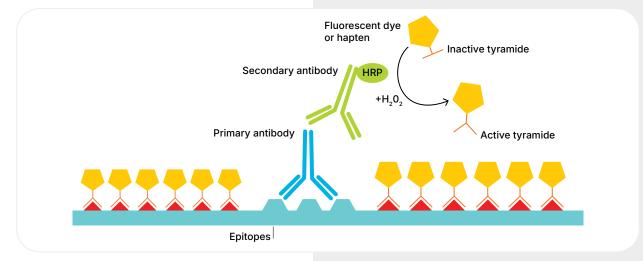
#### 2 Spatial Biology

Spatial biology (also called "spatial omics") is the study of molecular and cellular components in three-dimensional space. It provides the precise location of biomarkers and cell types within tissues and helps to understand how they interact and organize in the tissue environment.

Spatial biology combines the domains of spatial transcriptomics and spatial proteomics, offering insights into RNA and protein expression within a tissue. This field has become increasingly important in recent years, thanks to advances in imaging technologies including fluorescence in situ hybridization (FISH). In FISH, fluorescent probes are designed to bind to specific genetic sequences, showing the precise location of target sequences in cells and tissues.

A challenge commonly encountered in spatial biology (particularly spatial transcriptomics) is the detection of low abundance targets. Technologies such as Tyramide Signal Amplification (TSA) is a powerful method to efficiently enhance signal and detection in immunocytochemistry (ICC), immunohistochemistry (IHC), and in situ hybridization (ISH) applications.

#### TSA Reagents for Enhancing IHC, ICC & FISH Signals


Tyramide Signal Amplification (TSA), also known as Catalyzed Reporter Deposition (CARD), offers an effective way to efficiently enhance signal and detection capabilities for low-abundance targets in immunocytochemistry (ICC), immunohistochemistry (IHC), and *in situ* hybridization (ISH) applications.

#### **Tyramide Signal Amplification Principles**

A primary and secondary antibody are used to label a tissue or cell sample. The secondary antibody is pre-conjugated to horseradish peroxidase (HRP), which in the presence of  $\rm H_2O_{2'}$  catalyzes a labeled tyramide substrate into a highly reactive species that covalently binds to tyrosine residues on the proteins in close proximity to the antibodies and HRP, thus providing signal amplification.

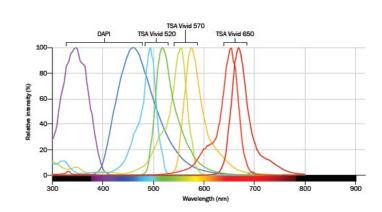
#### **Key Features of Tyramide Signal Amplification**

- Allows detection of low-abundance targets
- Enhances signals in IHC, ICC, and FISH
- Reduces the amount of primary antibody required
- 100-fold more sensitive than conventional methods
- Simple, flexible, and easy to incorporate into IHC, ICC, and FISH workflows
- Compatible with fluorescent multiplex systems

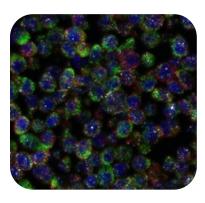


#### Tyramide Signal Amplification (TSA) Reagents

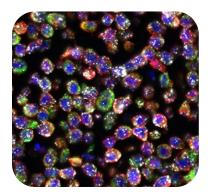
| Product Name            | Cat# | Description                                                                     | λ Abs<br>(nm) | λ Em<br>(nm) |
|-------------------------|------|---------------------------------------------------------------------------------|---------------|--------------|
| Biotinyl<br>Tyramide    | 6241 | Reagent widely used for signal amplification in IHC and FISH                    | -             | -            |
| Cyanine 3<br>Tyramide   | 6457 | Orange-fluorescent reagent widely used for signal amplification in IHC and FISH | 550           | 563          |
| Cyanine 5<br>Tyramide   | 6458 | Red fluorescent reagent widely used for signal amplification in IHC and FISH    | 651           | 665          |
| Digoxigenin<br>Tyramide | 7236 | Reagent used for Tyramide Signal Amplification in IHC, ICC, and ISH             | -             | -            |
| Fluorescein<br>Tyramide | 6456 | Green-fluorescent reagent widely used for signal amplification in IHC and FISH  | 494           | 517          |


#### **TSA Vivid™ Fluorophore Kits**

TSA Vivid™ Fluorophore Kits demonstrate increased brightness and improved performance in ICC, IHC, and FISH applications. They are specifically designed for exceptional signal-to-noise performance in the RNAscope™ Multiplex Fluorescent v2 Assay, enabling visualization of gene expression at the single cell level.


#### TSA Vivid™ Fluorophore Kits Key Features and Applications

- Brighter than equivalent competitor fluorophores
- Deliver leading performance with the RNAscope Multiplex Fluorescent v2 Assay
- Suitable for multiplexing
- Can be combined with DAPI counter staining


#### Optical data for DAPI, TSA Vivid™ 520, 570 and 650



#### **Leading Competitor**



TSA Vivid™



TSA Vivid™ brightness comparison:
3-plex RNAscope Multiplex Fluorescent
v2 Assay plus DAPI counterstain (Cat#
5748) on HeLa cells with TSA Vivid™
dyes (520, 570, 650, bottom) and the
corresponding leading competitor
dyes (top). All dyes were used at 1:1500
dilution. Markers shown are PoIr2a in
green, PPIB in red, and UBC in white.

#### What Researchers are Saying about TSA Vivid™

We tested the Tocris TSA Vivid™ dyes in our RNAscope multiplex fluorescence assay and were very pleased to find that they slotted into the protocol with no changes necessary. No optimization was required, and we were able to substitute our usual dyes at the same concentration. We are impressed with the results and how bright the dyes are.

— Dr. Julia Jones, Senior Scientific Officer, Cancer Research U.K.

| Product<br>Name                      | Cat# | Description                                                    | λ Abs<br>(nm) | λ Em<br>(nm) |
|--------------------------------------|------|----------------------------------------------------------------|---------------|--------------|
| TSA Vivid™<br>Fluorophore<br>Kit 520 | 7523 | Signal<br>amplification<br>kit for use in<br>ICC, IHC,<br>FISH | 494           | 517          |
| TSA Vivid™<br>Fluorophore<br>Kit 570 | 7526 | Signal<br>amplification<br>kit for use in<br>ICC, IHC,<br>FISH | 555           | 577          |
| TSA Vivid™<br>Fluorophore<br>Kit 650 | 7527 | Signal<br>amplification<br>kit for use in<br>ICC, IHC,<br>FISH | 654           | 668          |

# Visualize Multiple Markers Simultaneously in Tissue

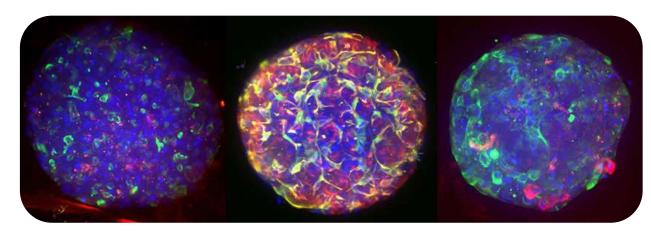
Detect, characterize and localize mRNA in the nervous system with RNAscope™ ISH



Learn More

Scan the QR Code or visit: bio-techne.com/reagents/ rnascope-ish-technology

#### **Tissue Clearing**


#### Tissue Clearing Pro and Tissue Clearing Pro-Organoid

Tissue Clearing Pro and Tissue Clearing Pro-Organoid are easy-to-use kits that allow rapid, effective, non-destructive, and reversible tissue clearing and staining of whole tissues (Tissue Clearing Pro) or organoids, 3D cell cultures, and microtissues (Tissue Clearing Pro-Organoid). Tissue Clearing Pro and Tissue Clearing Pro-Organoid are solvent-based tissue clearing techniques, comparable to BABB and DISCO. Tissue Clearing Pro-Organoid does not cause significant shrinkage or tissue damage and does not use as harsh a solvent as other solvent based techniques.

#### Key Features of Tissue Clearing Pro and Tissue Clearing Pro-Organoid

- Rapid, easy to use, reversible, and non-destructive
- Compatible with fluorescent protein, immunolabeling, and small molecule dye staining techniques
- Suitable for use with all standard dyes and buffers
- Following 3D imaging, Tissue Clearing Pro can be reversed for follow-up 2D histology staining
- Tissue Clearing Pro can clear a whole mouse brain of up to 8 mm thickness in 24 hours or 2 hours for 1 mm thick sections

| Product Name                  | Cat# | Description                          |
|-------------------------------|------|--------------------------------------|
| Tissue Clearing Pro           | 7389 | Tissue clearing reagent kit          |
| Tissue Clearing Pro Reagent 1 | 7563 | Tissue clearing reagent              |
| Tissue Clearing Pro-Organoid  | 7390 | 3D cell culture clearing reagent kit |



Tissue Clearing Pro-Organoid Applications. Tissue Clearing Pro-Organoid Kit (Cat# 7390) was applied to liver HepaRG spheroids, labeled with DAPI, and structure stained. Left: DNA, MRPII and MDRI; Middle: DNA, CD68, Albumin and Vimentin; Right: DNA, panCK and CD31.

#### 3 Organoids and 3D Cell Culture Imaging

Organoids and 3D primary cell cultures create a more physiologically relevant environment for studying cell-cell interactions and cellular responses than traditional 2D monolayer cultures. They offer a powerful new platform for studying organ development, modeling disease and screening for drug toxicity.

3D cell cultures are derived from primary cells and grown in a 3D matrix; they maintain the characteristics of the original tissue. In comparison, organoids are generated in vitro from primary tissue, embryonic **stem cells** (ESCs), or induced pluripotent stem cells (iPSCs) and can self-organize and differentiate into miniaturized versions of organs.

Bio-Techne offers a wide range of fluorescent products to help in the analysis of organoids and 3D cell cultures, enabling visualization of cellular structures, tracking of dynamic processes, and assessment of various functional parameters like viability, proliferation, and differentiation. Below is an overview of different types of fluorescent products and their uses in organoid and 3D cell culture research.

#### **Probes and Reagents for Organoids and 3D Cell Culture Imaging**

|                                  | Product Name                      | Cat#           | Description                                                                                                                                                                                                         | λ Abs<br>(nm)    | λ Em<br>(nm)       |
|----------------------------------|-----------------------------------|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------|
|                                  |                                   |                | Nucleic acid binding dye. Cell                                                                                                                                                                                      | 502<br>(double   | 525<br>strand)     |
|                                  | Acridine Orange hydrochloride     | 5092           | permeable. Used for: cell cycle and apoptosis determination. Application: flow cytometry, fluorescence                                                                                                              | 460<br>(single s | 650<br>strand)     |
|                                  |                                   |                | microscopy                                                                                                                                                                                                          | 549<br>(acidic o | 655<br>conditions) |
|                                  | Annexin V Apoptosis<br>Kit [FITC] | NBP2-<br>29373 | Apoptosis Kit. Application: flow cytometry, immunocytochemistry, immunofluorescence                                                                                                                                 | -                | -                  |
| Cell<br>Viability,<br>Apoptosis, | 7-Aminoactinomycin D              | 7121           | Red-fluorescent DNA stain, membrane impermeant to live cells. Used for: apoptosis detection, cell viability staining. Application: flow cytometry, fluorescence microscopy                                          | 549              | 655                |
| and<br>Proliferation<br>Probes   | Calcein AM                        | 5119           | Cell permeable non-fluorescent compound: green-fluorescent in living cells once hydrolyzed. Used for: cell tracing and cell viability monitoring. Application: fluorescent microscopy and flow cytometry            | 495              | 515                |
|                                  | Cell Counting Kit-8               | 7368           | Cell viability and proliferation assay test                                                                                                                                                                         | solution         |                    |
|                                  | Hoechst 33342                     | 5117           | Used to quantify DNA in viable cells; blue-fluorescent dye for DNA staining                                                                                                                                         | 350              | 461                |
| _                                | Propidium iodide                  | 5135           | Red-fluorescent DNA stain, membrane impermeant to live cells. Used for: apoptosis detection, nuclear counterstaining, viability staining. Application: flow cytometry, confocal microscopy, fluorescence microscopy | 535              | 617                |

|                      | Product Name                        | Cat# | Description                                                                                                                                                                                                              | λ Abs<br>(nm) | λ Em<br>(nm) |
|----------------------|-------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|--------------|
| DNA Probes           | DAPI                                | 5748 | Blue-fluorescent DNA stain / dye. Used<br>for: nuclear counterstain, fixed and<br>live-cell staining, assessing apoptosis.<br>Application: flow cytometry, confocal<br>microscopy, immunofluorescence (IHC,<br>ICC), ISH | 470           | 405          |
|                      | Hoechst 33342                       | 5117 | Blue-fluorescent dye for DNA staining.<br>Cell permeable. Used for: nuclear<br>counterstain, apoptosis analysis, fixed<br>and live-cell staining. Application: flow<br>cytometry, confocal microscopy                    | 350           | 461          |
| -                    | DAF FM diacetate                    | 7756 | Cell permeable photostable nitric oxide (NO) fluorescent indicator                                                                                                                                                       | 495           | 515          |
|                      | Fluo-4 AM                           | 6255 | Cell-permeable, fluorescent Ca <sup>2+</sup> indicator                                                                                                                                                                   | 494           | 506          |
|                      | FURA-2AM                            | 2220 | Fluorescent Ca <sup>2+</sup> indicator                                                                                                                                                                                   | 371           | 474          |
| lan                  | ING-2 AM                            | 7870 | Fluorescent sodium ion (Na+) indicator, membrane permeable                                                                                                                                                               | 525           | 545          |
| Ion<br>Indicators    | IPG-4 AM                            | 7871 | Fluorescent potassium ion (K*) indicator, membrane permeable                                                                                                                                                             | 525           | 545          |
| -                    | Mag-Fura-2 AM                       | 7855 | Magnesium (Mg²+) indicator, membrane permeable                                                                                                                                                                           | 369           | 511          |
|                      | MQAE                                | 7856 | Fluorescent CI- indicator; membrane permeable                                                                                                                                                                            | 355           | 460          |
|                      | OG 488 BAPTA-1 AM                   | 6256 | Cell-permeable, fluorescent Ca <sup>2+</sup> indicator                                                                                                                                                                   | 494           | 523          |
|                      | MitoBrilliant™ 646                  | 7700 | Universal red fluorescent mitochondrial stain for both live and fixed cells                                                                                                                                              | 655           | 668          |
| -                    | MitoBrilliant™ Live 549             | 7693 | Orange-fluorescent mitochondrial stain for live cells, Δψm dependent                                                                                                                                                     | 550           | 568          |
| -                    | MitoBrilliant™ Live 646             | 7417 | Red-fluorescent mitochondrial stain for<br>live cells, Δψm dependent                                                                                                                                                     | 648           | 662          |
| Mitochondrial Probes | Mito-HE                             | 7641 | Red-fluorescent mitochondrial<br>superoxide indicator. Used for: live cell<br>imaging. Application: confocal<br>microscopy, flow cytometry                                                                               | 510           | 580          |
| -                    | MitoPY1                             | 4428 | Fluorescent mitochondrial hydrogen<br>peroxide indicator. Used for: live cell<br>imaging. Application: confocal<br>microscopy                                                                                            | 510           | 530          |
| ROS Probes           | H2DCFDA                             | 5935 | Fluorescent ROS indicator; cell permeable                                                                                                                                                                                | 490           | 520          |
| Stem Cell<br>Probes  | ALDH Detection<br>Reagent - BAAA-DA | 7556 | Fluorescent ALDH substrate and detection reagent. Used for: identification of cells with high ALDH activity. Application: flow cytometry, fluorescentactivated cell sorting (FACS)                                       | 505           | 512          |
|                      | Kyoto Probe-1                       | 7419 | Fluorescent probe that selectively identifies undifferentiated iPS/ES cells                                                                                                                                              | 515           | 529          |
| Voltage<br>Sensors   | Di 4 ANEPPS                         | 7324 | Voltage-sensitive probe; used to detect changes in membrane potential in electrophysiology protocols                                                                                                                     | 465           | 635          |
| Tissue<br>Clearing   | Tissue Clearing Pro-Organoid        | 7390 | 3D cell culture clearing reagent kit                                                                                                                                                                                     | 465           | 635          |

#### The Organoid Handbook

This handbook is the must have resource for research using organoids and 3D cell cultures. It includes key publications, protocols, reagents, and troubleshooting recommendations for culturing, maintenance, and imaging of different types of organoids.





#### **Download Here**

Scan the QR Code or visit: bio-techne.com/resources/literature/ organoid-handbook

#### 4 In Vivo, Deep Tissue, and Bioluminescence Imaging

#### In Vivo and Deep Tissue Imaging

Non-invasive imaging in vivo and in deep tissue comes with some challenges that require fluorescent dyes and probes designed with specific properties to enable data generation.

The main limitations for tissue imaging are first, the autofluorescence from intrinsic biomolecules can interfere with detecting specific fluorescent signals. Secondly, because tissues are extremely heterogeneous, fluorescence is scattered or absorbed, limiting its effectiveness for imaging in larger organisms or deep tissues.

Near Infrared (NIR) fluorescent dyes have emission wavelengths in the NIR range (650-1,700 nm) and offer several advantages over visible-range light dyes (400-700 nm) such as deep tissue penetration, low tissue background autofluorescence, and minimum phototoxicity for biological components due to the longer excitation wavelengths required. They are therefore an ideal choice for in vivo fluorescence imaging.

Bio-techne offers a selection of probes and NIR fluorescent dyes for non-invasive imaging in vivo and deep tissue imaging.

#### **Near Infrared (NIR) Fluorescent Dyes**

| Product Name          | Cat# | Description                                                                                                                               | λ Abs (nm) | λ Em (nm) |
|-----------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| FNIR-Tag, NHS ester   | 7373 | Near-infrared fluorescent dye for labeling of amines; supplied as NHS ester                                                               | 765        | 788       |
| ICG-d7                | 7749 | Near-infrared (NIR) fluorescent dye; partially deuterated form of <b>Indocyanine Green</b> (Cat# 7510), suitable for in vivo imaging.     | 794        | 818       |
| Indocyanine<br>green  | 7510 | Near-infrared fluorescent dye; suitable for in vivo imaging                                                                               | 787        | 815       |
| NIR Dye s775z,<br>NHS | 7626 | Near-infrared fluorescent dye supplied with an NHS ester reactive group for the labeling of primary amines. Suitable for in vivo imaging. | 775        | 795       |

#### **SCOTfluor Probes**

SCOTfluors are small-sized fluorophores for non-invasive and real-time tracking imaging of essential metabolites in live cells and in vivo.

| Product Name                          | Cat# | Description                                                                                                                      | λ Abs (nm) | λ Em (nm) |
|---------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| SCOTfluor<br>510, fluoro              | 7446 | Amine-reactive fluorescent probe precursor for live cells and in vivo imaging                                                    | 510        | 606       |
| SCOTfluor 510<br>Fmoc-Dapa-<br>OH     | 7900 | Fmoc protected fluorescent amino acid. Used as a building block in solid-phase peptide synthesis to prepare PAINT imaging probes | 488        | 601       |
| SCOTfluor<br>glucose probe<br>510     | 7447 | Fluorescent glucose probe for visualizing glucose uptake in vivo                                                                 | 490        | 605       |
| SCOTfluor<br>lactic acid<br>probe 510 | 7448 | Fluorescent lactic acid probe for imaging lactic acid metabolism in vivo                                                         | 485        | 605       |

#### **Amyloid β Probes**

Amyloid plaques resulting from the accumulation of amyloid-β peptide fibrils in the brain is one of the main hallmarks of Alzheimer's disease, the most common neurodegenerative disorder. Our blood-brain-barrier-penetrant fluorescent probes allow the detection and quantification of β amyloid plagues for in vitro and vivo imaging.

#### Fluorescent Amyloid β Probes

| Product Name | Cat# | Description                                                                                                                                                                                                                               | λ Abs (nm) | λ Em (nm) |
|--------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Methoxy-X04  | 4920 | Blood-brain barrier penetrant fluorescent amyloid β probe. Used for: detection and quantification of plaques, tangles and cerebrovascular amyloid. Application: confocal microscopy, suitable for in vivo imaging                         | 370        | 452       |
| QM-FN-SO3    | 7958 | Blood-brain barrier penetrant, NIR aggregation-induced emission active probe of amyloid $\beta$ plaques. Used for: in vitro, in situ and in vivo imaging of amyloid $\beta$ plaques. Application: confocal microscopy and in vivo imaging | 488        | 680       |

#### **Substrates for Bioluminescent Imaging**

Bioluminescent substrates are commonly utilized for non-invasive monitoring of biological processes, for example in bioluminescence imaging (BLI) in both in vivo and in vitro settings. Luciferase substrates emit light when they become oxidized, which can be detected using fluorescence microscopy.

#### Firefly luciferase (Fluc) and D-Luciferin

The Firefly luciferase (Fluc) and D-Luciferin BLI system has long been utilized in standard lab techniques such as monitoring tumor growth and intracellular signaling activity in vitro and in vivo. While this system is very useful for many applications, it is less suitable for experiments requiring detection in deep tissue because of the relatively short emission wavelength produced by D-Luciferin ( $\lambda$ max= 562 nm). This wavelength is very similar to those of melanin ( $\lambda$ max =  $\sim$ 600 nm) and hemoglobin ( $\lambda$ max = 415-577 nm), making signal detection of D-Luciferin emanating from deep within tissue challenging to detect.

#### Deep Tissue Bioluminescent Imaging: TokeOni

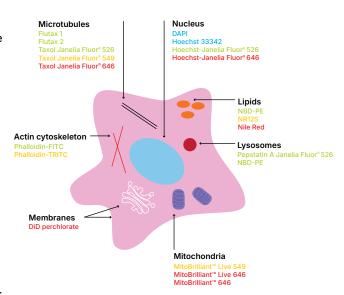
In bioluminescent imaging, effective deep tissue imaging requires the emission of red-shifted light in the NIR region.

A breakthrough towards developing brighter bioluminescence in the desired near-IR region has been the development of engineered luciferases (Akaluc), which permit higher accumulation inside cells with lower toxicity, and modified luciferin substrates such as TokeOni (Cat# 6555, also known as AkaLumine HCl,  $\lambda$ max= 677 nm). TokeOni allows for deep tissue imaging in the near-IR region and exhibits excellent tissue distribution, including good brain permeability when orally administered.

The improved properties of luciferin substrates combined with engineered luciferases open these substrates up to many in vivo applications including monitoring stem cell fate, tumor growth, metastasis and assessing gene-editing technologies.

#### **Bioluminescent Substrates**

| Product<br>Name       | Cat# | Description                                                                        | λ Em<br>(nm) |
|-----------------------|------|------------------------------------------------------------------------------------|--------------|
| BL <sub>660-</sub> NO | 7753 | Nitric oxide<br>activity-based<br>sensing NIR<br>bioluminescent<br>probe           | 660          |
| D-Luciferin           | 5427 | Firefly luciferase<br>substrate; cell<br>permeable                                 | 562          |
| TokeOni               | 6555 | NIR-emission<br>luciferin analog;<br>orally bioavailable<br>and brain<br>penetrant | 677          |

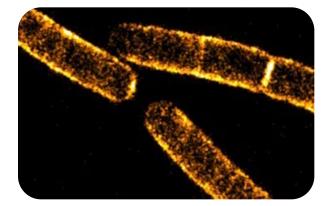



#### 5 High Content Imaging

High Content Imaging (HCI), also known as High Content Screening (HCS), is an advanced technique used in cellular and molecular biology to automate the collection, analysis, and interpretation of microscopic images from biological samples. It allows high-throughput screening of cellular phenotypes in response to diverse changes in fixed or live cells.

HCS multiplexed images can be performed using fluorescent probes for cellular and subcellular components that are suitable for multiplexing. The data capture of the labeled cells gives quantitative phenotypic profiles of cell morphology without the need for specific antibody labeling.

Bio-Techne provides a range of probes to help you to label cellular or subcellular components in living cells such as mitochondria, microtubules, nucleus, membranes, actin cytoskeleton, lipids and lysosomes.




#### Fluorescent Probes for Cellular or Subcellular Components and their Emission Colors

| Cell Organelles    | Blue                                                       | Green                                                                                                                                                | Yellow/Orange                           | Red                                                                                                                     |
|--------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------|
| Actin cytoskeleton |                                                            | Phalloidin-FITC<br>(Cat# 5782)                                                                                                                       | Phalloidin-TRITC<br>(Cat# 5783)         |                                                                                                                         |
| Lipids             |                                                            | <b>NBD-PE</b> (Cat# 7538)                                                                                                                            | <b>NR12S</b><br>(Cat# 7509)             | Nile Red<br>(Cat# 7387)                                                                                                 |
| Lysosomes          |                                                            | <ul> <li>Pepstatin A         Janelia Fluor®         526 (Cat# 7314)</li> <li>NBD-PE         (Cat# 7538)</li> </ul>                                   |                                         |                                                                                                                         |
| Microtubules       |                                                            | <ul> <li>Flutax 1         (Cat# 2226)</li> <li>Flutax 2         (Cat# 6254)</li> <li>Taxol Janelia         Fluor° 526         (Cat# 7315)</li> </ul> | Taxol Janelia Fluor® 549<br>(Cat# 6267) | Taxol Janelia<br>Fluor® 646<br>(Cat# 6266)                                                                              |
| Mitochondria       |                                                            |                                                                                                                                                      | MitoBrilliant™ Live 549<br>(Cat# 7693)  | <ul> <li>MitoBrilliant™         Live 646         (Cat# 7417)</li> <li>MitoBrilliant™ 646         (Cat# 7700)</li> </ul> |
| Membranes          |                                                            |                                                                                                                                                      |                                         | <b>DiD perchlorate</b> (Cat# 5702)                                                                                      |
| Nucleus            | • DAPI<br>(Cat# 5748)<br>• Hoechst<br>33342<br>(Cat# 5117) | Hoechst Janelia<br>Fluor® 526<br>(Cat# 7313)                                                                                                         |                                         | Hoechst Janelia<br>Fluor® 646<br>(Cat# 6804)                                                                            |

#### 6 Imaging Bacteria

Fluorescent probes for imaging bacteria are useful for advancing bacterial research and antibiotic design.
Fluorescent D-amino acids (FDAAs) are an essential tool for studying peptidoglycan synthesis and dynamics, and our range now spans the visible light spectrum giving you more options for multiplexing.
FDAAs efficiently label peptidoglycans in bacterial cell walls *in situ*, allowing you to investigate and visualize cell morphology and formation, as well as bacterial growth. They can be used in gram-negative and gram-positive bacteria, and they are suitable for use with super-resolution microscopy (SRM).



Application of sCy5DA: Single molecule localization microscopy (SMLM) image of *Bacillus subtilis* cells labeled with 100  $\mu$ M sCy5DA (Cat# 7834).

#### **Fluorescent Probes for Imaging Bacteria**

| Product Name                        | Cat#                                                                                         | Description                                                                                             | λ<br>Abs<br>(nm) | λ Em<br>(nm) |
|-------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------|--------------|
| Click N-Acetylmuramic acid - alkyne | 6798                                                                                         | Bacterial peptidoglycan derivative; suitable for 'click'-conjugation to fluorescent dyes                | -                | -            |
| Click N-Acetylmuramic acid - azide  | 7506                                                                                         | Bacterial peptidoglycan derivative; suitable for 'click'-conjugation to fluorescent dyes                |                  | -            |
| EDA-DA                              | 7714                                                                                         | Unnatural dipeptide building block with alkyne group for functionalizing peptidoglycan                  |                  | 450          |
| HADA                                | 6647                                                                                         | Blue-fluorescent D-amino acid for labeling peptidoglycans in live pacteria                              |                  | 450          |
| NADA-green                          | 6648                                                                                         | Fluorescent D-amino acid for labeling peptidoglycans in live bacteria                                   |                  | 555          |
| OGDA                                | 7408                                                                                         | Green-fluorescent D-amino acid; compatible with STED microscopy                                         | 501              | 526          |
| RADA                                | Orange-red TAMRA-based fluorescent D-amino acid for labeling peptidoglycans in live bacteria |                                                                                                         | 554              | 580          |
| Rf470DL                             | 7406                                                                                         | Blue rotor-fluorogenic fluorescent D-amino acid for labeling peptidoglycans in live bacteria            | 470              | 620          |
| RMR-Tre                             | 8013                                                                                         | Far-red fluorogenic trehalose probe for live mycobacteria imaging                                       | 549              | 571          |
| sBADA                               | 7860                                                                                         | Green-fluorescent D-amino acid for labeling peptidoglycans in bacteria                                  | 490              | 510          |
| sCy5DA                              | 7834                                                                                         | FDAA for super-resolution microscopy of bacteria                                                        | 646              | 665          |
| sCy5DL-amide                        | 7835                                                                                         | FDAA for super-resolution microscopy of bacteria                                                        | 646              | 666          |
| Se-NADA                             | 7449                                                                                         | Orange-fluorescent benzoselenadiazole D-amino acid (FDAA) for imaging bacteria; also, photosensitizer   | 470              | 590          |
| 6 TMR Tre                           | 6802                                                                                         | Fluorescent trehalose; selectively labels mycobacterial cell envelope                                   | 532              | 580          |
| YADA                                | 6650                                                                                         | Green-yellow lucifer yellow-based fluorescent D-amino acid for labeling peptidoglycans in live bacteria | 426              | 535          |

#### See what our customers think:

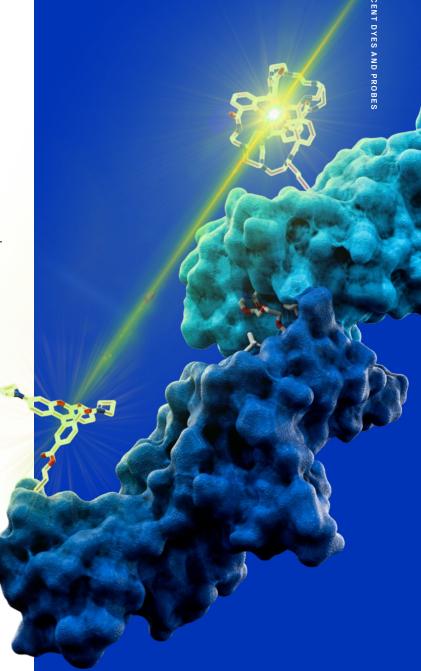
HADA ★★★★★ Reviews



Check out 5-star customer reviews

Scan the QR Code or visit: bio-techne.com/hada-reviews

# Other Fluorescent Probes and Stains


Fluorescent probes and stains enable visualization and study of cellular and subcellular components. They can either function as specific markers for single molecules, organelles, or cells, or can monitor environmental factors such as pH or polarity.

They enable researchers to detect components of complex biomolecular assemblies, such as microtubules, with high sensitivity and selectivity allowing the exploration of cell structure and function. Bio-Techne offers a wide selection of fluorescent probes, covering organelle probes and cell viability stains.

Fluorescent and bioluminescent reagents enable highly sensitive and selective visualization of biological events, from single molecule tracking in vitro, through to in vivo imaging. Discover our exclusive range of fluorescent probes, indicators, dyes, and stains.

Alternatively, they might provide a functional readout, such as live versus fixed cell staining.

## Experience Cora Fluor™ TR-FRET Redefining TR-FRET with brighter, robust, and versatile assay technology





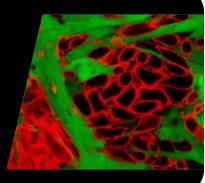
**View the Product Guide** 

Scan the QR Code or visit: bio-techne.com/reagents/ tr-fret-and-fp-assay-reagents

#### Fluorescent Probes and Stains

|                                               | Product Name                        | Cat#                 | Description                                                                                                                                                                                             | λ Abs (nm)      | λ Em (nm) |
|-----------------------------------------------|-------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------|
|                                               | ALDH Detection Reagent<br>- BAAA-DA | 7556                 | ALDH Detection Reagent - BAAA-<br>DA                                                                                                                                                                    | -               | -         |
| -<br>-<br>-                                   | BDY FL VH032                        | 7483                 | High-affinity VHL fluorescent probe                                                                                                                                                                     | 502             | 510       |
|                                               | DiFMUP                              | 6882                 | Fluorescent phosphatase substrate                                                                                                                                                                       | 358             | 455       |
|                                               | 7-Ethoxyresorufin                   | 6204                 | Fluorometric CYP450 substrate                                                                                                                                                                           | -               | -         |
|                                               | FAM-DEALA-Hyp-YIPD                  | 7287                 | Fluorescent HIF-1α peptide                                                                                                                                                                              | 485             | 520       |
| Enzyme<br>Probes and<br>Enzyme<br>Substrates  | Fluorescein-NAD+                    | 6574                 | Fluorescent NAD+; substrate for ADP-ribosylation for use in PARP assays                                                                                                                                 | -               | -         |
|                                               | GF-AFC                              | 8143                 | Cell permeable fluorogenic<br>substrate cleaved by cytosolic<br>aminopeptidases for non-lytic high<br>throughput cell viability assays                                                                  | -               | -         |
|                                               | PARPi-FL                            | 6461                 | Potent fluorescent PARP inhibitor; cell permeable                                                                                                                                                       | -               | 525       |
|                                               | Thalidomide-Cyanine 5               | 7288                 | Fluorescent cerebion probe                                                                                                                                                                              | 650             | 665       |
| Fluorescent<br>Cholesterol<br>Probes          | Filipin III                         | 6250                 | Fluorescent cholesterol stain; polyene antibiotic                                                                                                                                                       | 405             | 420-480   |
|                                               | Calcein AM                          | 5119                 | Cell permeable compound;<br>hydrolyzed to become fluorescent<br>in living cells                                                                                                                         | 495             | 515       |
|                                               | DA ZP1                              | 7444                 | Fluorogenic Zn (II) sensor for isolation of stem cell-derived $\boldsymbol{\beta}$ cells                                                                                                                | 490             | 522       |
|                                               | DAF FM diacetate                    | 7756                 | Cell permeable photostable nitric oxide (NO) fluorescent indicator                                                                                                                                      | 495             | 515       |
|                                               | Di 4 ANEPPS                         | 7324                 | Voltage-sensitive probe; used to detect changes in membrane potential in electrophysiology protocols                                                                                                    | 465             | 635       |
| Fluorescent<br>Cell<br>Indicators             | H2DCFDA                             | 5935                 | Fluorescent ROS indicator; cell permeable                                                                                                                                                               | 490             | 520       |
| and<br>Sensors                                | L 012 sodium salt                   | 5085                 | Chemiluminescent ROS and RNS indicator                                                                                                                                                                  | -               | -         |
| -                                             | Mito-HE                             | 7641                 | Fluorescent mitochondrial superoxide indicator in live cells                                                                                                                                            | 510             | 580       |
|                                               | MitoPY1                             | 4428                 | Fluorescent mitochondrial hydrogen peroxide indicator                                                                                                                                                   | 510             | 530       |
|                                               | 2-NBDG                              | 6065                 | Fluorescent glucose uptake indicator                                                                                                                                                                    | 467             | 542       |
|                                               | Peroxy Orange 1                     | 4944                 | Fluorescent hydrogen peroxide indicator                                                                                                                                                                 | 545             | 750       |
|                                               | Sulfidefluor 7 AM                   | 4943                 | H <sub>2</sub> S fluorescent probe                                                                                                                                                                      | 495             | 520       |
| Fluorescent<br>Integrin                       | BOP-JF646                           | 6997                 | Red fluorescent dual α9β1/α4β1 integrin inhibitor; fluorogenic                                                                                                                                          | 655             | 647       |
| Probes                                        | LDV FITC                            | 4577                 | Fluorescent ligand for $\alpha4\beta1$ (VLA-4)                                                                                                                                                          | -               | -         |
| Fluorescent                                   | CELT-133                            | 7952                 | Selective hα1A adrenergic receptor fluorescent antagonist                                                                                                                                               | 560             | 571       |
| Probes                                        | CELT-211                            | 7953                 | Fluorescent serotonin 5HT <sub>2B</sub> receptor ligand for HTS                                                                                                                                         | 589             | 616       |
| Integrin<br>Probes<br>Fluorescent<br>Receptor | BOP-JF646  LDV FITC  CELT-133       | 6997<br>4577<br>7952 | Red fluorescent dual α9β1/α4β1 integrin inhibitor; fluorogenic  Fluorescent ligand for α4β1 (VLA-4)  Selective hα1A adrenergic receptor fluorescent antagonist  Fluorescent serotonin 5HT <sub>28</sub> | 655<br>-<br>560 | 647       |

|                                      | Product Name                | Cat# | Description                                                                                                         | λ Abs (nm) | λ Em (nm) |
|--------------------------------------|-----------------------------|------|---------------------------------------------------------------------------------------------------------------------|------------|-----------|
| Fluorescent<br>Receptor<br>Probes    | CELT-327                    | 7954 | Potent and selective hA2B/A3 adenosine receptor fluorescent antagonist                                              | 589        | 616       |
|                                      | CELT-426                    | 7955 | Potent and partially selective hD <sub>2</sub> dopamine receptor fluorescent antagonist                             | 560        | 571       |
|                                      | DC 271                      | 6873 | Fluorescent retinoic acid analog; solvochromatic probe                                                              | 351        | 442       |
|                                      | LDV FITC                    | 4577 | Fluorescent ligand for $\alpha_4\beta_1$ (VLA-4)                                                                    | -          | -         |
|                                      | Tocrifluor T1117            | 2540 | Fluorescent cannabinoid ligand;<br>fluorescent form of AM 251<br>(Cat# 1117)                                        | 543        | 590       |
|                                      | tri-GalNAc-C5-AF647         | 7901 | Fluorescent ASGPR ligand.<br>Application: flow cytometry,<br>fluorescence microscopy                                | 663        | 684       |
|                                      | HB-2-30                     | 8831 | Fluorescent TG2/LRP1 substrate for imaging endocytosis                                                              | -          | -         |
| Fluorescent<br>RNA Probes            | RNA Imaging Probe 1c        | 8813 | Fluorogenic RNA imaging probe                                                                                       | 556        | 608       |
| Fluorescent<br>Transporter<br>Probes | Evans Blue                  | 0845 | Dye for assessing cell viability and<br>blood brain barrier permeability;<br>EAAT inhibitor and iGluR<br>antagonist | -          | 680       |
|                                      | FFN 102                     | 5200 | Selective fluorescent substrate of DAT and VMAT2                                                                    | 340        | 435       |
|                                      | FFN 200                     | 5911 | Selective fluorescent VMAT2 substrate                                                                               | 352        | 451       |
|                                      | FFN 206                     | 5043 | Fluorescent VMAT2 substrate                                                                                         | 369        | 464       |
|                                      | FFN 270                     | 6717 | Fluorescent substrate for NET and VMAT2                                                                             | 320        | 475       |
|                                      | 2-NBDG                      | 6065 | Fluorescent glucose uptake indicator                                                                                | 467        | 542       |
|                                      | SCOTfluor glucose probe 510 | 7447 | Fluorescent glucose probe                                                                                           | 490        | 605       |
| Histology<br>Stains                  | SynaptoRed™ C2              | 5118 | Fluorescent dye; stains synaptic vesicles                                                                           | 510        | 750       |
| Neuron &<br>Astrocyte<br>Probes      | Sulforhodamine 101          | 5146 | Red fluorescent dye; selective astrocyte marker                                                                     | 586        | 606       |
|                                      | SynaptoRed™ C2              | 5118 | Fluorescent dye; stains synaptic vesicles                                                                           | 510        | 750       |


#### **GPCR Fluorescent Ligands**

Probes for dopamine, serotonin, adenosine, and adrenergic receptors. Suitable for live cell imaging, flow cytometry, and TR-FRET assays.



#### **Discover Now**

Scan the QR Code or visit: bio-techne.com/search?search\_ type=products&keywords=CELT



#### **Contact Us**

Global info@bio-techne.com, bio-techne.com/find-us/distributors North America TEL 800 343 7475 Europe // Middle East // Africa TEL +44 (0)1235 529449 China info.cn@bio-techne.com, TEL 400.821.3475

For research use or manufacturing purposes only. Trademarks and registered trademarks are the property of their respective owners. 7965306114\_0225



**bie-techne** Global Developer, Manufacturer, and Supplier of High-Quality Reagents, Analytical Instruments, and Precision Diagnostics.