Profiling Kinase Phosphorylation using Antibody Arrays
Greta Wegner, Erin Eleria, Jackie Ernst, Amy James | R&D Systems, Inc., USA

ABSTRACT
Aberrant signaling in the PI 3-Kinase/Akt and Raf/MEK/ERK pathways is associated with the formation of cancerous tumors, while interplay between these two pathways contributes to pharmacological resistance. The goal of this study was to measure the effects of MEK and PI 3-Kinase inhibitors on the phosphorylation of 43 different kinases using antibody arrays as screening tools. In both A549 human lung adenocarcinoma and T47D human ductal breast cancer cells, EGF treatment resulted in increased Akt (S473) and ERK1/2 (T202/Y204,T185/Y187) phosphorylation. In A549 cells, the phosphorylation of Akt was inhibited by the PI 3-Kinase inhibitors AS 605240, LY 294002, and PI 103. ERK phosphorylation in T47D cells was completely inhibited by the MEK inhibitor PD 032590, but displayed resistance to PD 98059 and U0126. Instead, an increase in Akt phosphorylation was observed with U0126 treatment compared to the untreated and other inhibitor treated cells. These results demonstrate the utility of the Human Phospho-Kinase array for monitoring off-target inhibitor responses on interdependent pathways. The dose response of inhibitors on ERK and CREB phosphorylation was measured using arrays and confirmed using ELISA with excellent correlation. By employing a chemiluminescence detection method, no specialized equipment beyond what is typically used to collect Western blot data was required.

MATERIALS & METHODS

The T47D human ductal breast epithelial cell line was treated with different concentrations of PD 0325901 for 2 hours, followed by treatment with 100 ng/mL EGF for 15 minutes. A. Phosphorylation was measured using Western blot. B. Images of Proteome Profiler Human Phospho-Kinase membrane arrays and the corresponding histogram profiles are shown.

RESULTS

PI 3-Kinase Inhibitor Screen

Figure 1. Induction and Inhibition of Kinase Phosphorylation in Lung Adenocarcinoma Cells. The A549 human lung adenocarcinoma cell line was untreated or treated with AS 605240, LY 294002, or PI-103 at 5 µM for 3 hours, followed by treatment with 100 ng/mL EGF for 15 minutes. Images of the Proteome Profiler Human Phospho-Kinase membrane array and the corresponding histogram profiles are shown.

Figure 2. Induction and Inhibition of Kinase Phosphorylation in Breast Cancer Cells. The T47D human ductal breast epithelial cell line was untreated or treated with 10 µM PD 0325901, 20 µM PD 98059, 10 µM SL 327, or 10 µM U0126 for 2 hours, followed by treatment with 100 ng/mL EGF for 15 minutes. Images of Proteome Profiler Human Phospho-Kinase membrane arrays and the corresponding histogram profiles are shown.

CONCLUSIONS

The Human Phospho-Kinase array is an economical alternative to traditional methods such as Western blot for screening changes in kinase phosphorylation. Both plate-based and membrane-based arrays required 3.5 hours of hands-on time, making this method far more time-effective than performing multiple Western blots. By employing a chemiluminescence detection method, no specialized equipment beyond what is typically used to collect Western blot data was required. Both arrays are sufficiently sensitive to measure changes in phosphorylation caused by both ligand and inhibitor treatment, and were shown to be comparable to ELISA. This method also allows for the facile evaluation of inhibitor selectivity to off-target kinases.

www.RDSys.com
For research use only. Not for use in diagnostic procedures.